Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Enzymes ; 47: 517-549, 2020.
Article in English | MEDLINE | ID: mdl-32951834

ABSTRACT

The reversible (de)carboxylation of unsaturated carboxylic acids is carried out by the UbiX-UbiD system, ubiquitously present in microbes. The biochemical basis of this challenging reaction has recently been uncovered by the discovery of the UbiD cofactor, prenylated FMN (prFMN). This heavily modified flavin is synthesized by the flavin prenyltransferase UbiX, which catalyzes the non-metal dependent prenyl transfer from dimethylallyl(pyro)phosphate (DMAP(P)) to the flavin N5 and C6 positions, creating a fourth non-aromatic ring. Following prenylation, prFMN undergoes oxidative maturation to form the iminium species required for UbiD activity. prFMNiminium acts as a prostethic group and is bound via metal ion mediated interactions between UbiD and the prFMNiminium phosphate moiety. The modified isoalloxazine ring is place adjacent to the E(D)-R-E UbiD signature sequent motif. The fungal ferulic acid decarboxylase Fdc from Aspergillus niger has emerged as a UbiD-model system, and has yielded atomic level insight into the prFMNiminium mediated (de)carboxylation. A wealth of data now supports a mechanism reliant on reversible 1,3 dipolar cycloaddition between substrate and cofactor for this enzyme. This poses the intriguing question whether a similar mechanism is used by all UbiD enzymes, especially those that act as carboxylases on inherently more difficult substrates such as phenylphosphate or benzene/naphthalene. Indeed, considerable variability in terms of oligomerization, domain motion and active site structure is now reported for the UbiD family.


Subject(s)
Dimethylallyltranstransferase/chemistry , Flavin Mononucleotide/chemistry , Aspergillus niger/enzymology , Catalytic Domain , Fungal Proteins/chemistry , Prenylation
2.
ACS Chem Biol ; 15(9): 2466-2475, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32840348

ABSTRACT

Prenylated flavin mononucleotide (prFMN) is a recently discovered modified flavin cofactor containing an additional nonaromatic ring, connected to the N5 and C6 atoms. This cofactor underpins reversible decarboxylation catalyzed by members of the widespread UbiD enzyme family and is produced by the flavin prenyltransferase UbiX. Oxidative maturation of the UbiX product prFMNH2 to the corresponding oxidized prFMNiminium is required for ferulic acid decarboxylase (Fdc1; a UbiD-type enzyme) activity. However, it is unclear what role the Fdc1 enzyme plays in this process. Here, we demonstrate that, in the absence of Fdc1, prFMNH2 oxidation by O2 proceeds via a transient semiquinone prFMNradical species and culminates in a remarkably stable prFMN-hydroperoxide species. Neither forms of prFMN are able to support Fdc1 activity. Instead, enzyme activation using O2-mediated oxidation requires prFMNH2 binding prior to oxygen exposure, confirming that UbiD enzymes play a role in O2-mediated oxidative maturation. In marked contrast, alternative oxidants such as potassium ferricyanide support prFMNiminium formation both in solution and in Fdc1.


Subject(s)
Carboxy-Lyases/chemistry , Flavin Mononucleotide/chemistry , Hemiterpenes/chemistry , Aspergillus niger/enzymology , Biocatalysis , Fungal Proteins/chemistry , Models, Chemical , Oxidation-Reduction , Oxygen/chemistry
3.
Methods Enzymol ; 620: 489-508, 2019.
Article in English | MEDLINE | ID: mdl-31072499

ABSTRACT

The recent discovery of the prenylated FMN (prFMN) cofactor has led to a renewed interest in the prFMN-dependent UbiD family of enzymes. The latter catalyses the reversible decarboxylation of alpha-beta unsaturated carboxylic acids and features widely in microbial metabolism. The flavin prenyltransferase UbiX synthesizes prFMN from reduced FMN and phosphorylated dimethylallyl precursors. Oxidative maturation of the resulting prFMNreduced species to the active prFMNiminium form is required for UbiD activity. Heterologous production of active holo-UbiD requires co-expression of UbiX, but the levels of prFMN incorporation and oxidative maturation appear variable. Detailed protocols and strategies for in vitro reconstitution and oxidative maturation of UbiD are presented that can yield an alternative source of active holo-UbiD for biochemical studies.


Subject(s)
Carboxy-Lyases/chemistry , Electron Spin Resonance Spectroscopy/methods , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Carboxy-Lyases/isolation & purification , Carboxy-Lyases/metabolism , Decarboxylation , Escherichia coli Proteins/isolation & purification , Escherichia coli Proteins/metabolism , Flavin Mononucleotide/chemistry , Oxidation-Reduction , Prenylation , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
4.
Nat Commun ; 10(1): 2357, 2019 05 29.
Article in English | MEDLINE | ID: mdl-31142738

ABSTRACT

The UbiX-UbiD enzymes are widespread in microbes, acting in concert to decarboxylate alpha-beta unsaturated carboxylic acids using a highly modified flavin cofactor, prenylated FMN (prFMN). UbiX serves as the flavin prenyltransferase, extending the isoalloxazine ring system with a fourth non-aromatic ring, derived from sequential linkage between a dimethylallyl moiety and the FMN N5 and C6. Using structure determination and solution studies of both dimethylallyl monophosphate (DMAP) and dimethyallyl pyrophosphate (DMAPP) dependent UbiX enzymes, we reveal the first step, N5-C1' bond formation, is contingent on the presence of a dimethylallyl substrate moiety. Hence, an SN1 mechanism similar to other prenyltransferases is proposed. Selected variants of the (pyro)phosphate binding site are unable to catalyse subsequent Friedel-Crafts alkylation of the flavin C6, but can be rescued by addition of (pyro)phosphate. Thus, retention of the (pyro)phosphate leaving group is required for C6-C3' bond formation, resembling pyrophosphate initiated class I terpene cyclase reaction chemistry.


Subject(s)
Aspergillus niger/enzymology , Carboxy-Lyases/metabolism , Dimethylallyltranstransferase/metabolism , Dinitrocresols/metabolism , Fungal Proteins/metabolism , Binding Sites , Decarboxylation , Diphosphates/metabolism , Prenylation , Terpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...