Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 54(4): 1357-60, 2015 Jan 19.
Article in English | MEDLINE | ID: mdl-25475369

ABSTRACT

We report the observation of chemical reactions in gas-phase Rh(n)(N2O)m(+) complexes driven by absorption of blackbody radiation. The experiments are performed under collision-free conditions in a Fourier transform ion cyclotron resonance mass spectrometer. Mid-infrared absorption by the molecularly adsorbed N2O moieties promotes a small fraction of the cluster distribution sufficiently to drive the N2O decomposition reaction, leading to the production of cluster oxides and the release of molecular nitrogen. N2O decomposition competes with molecular desorption and the branching ratios for the two processes show marked size effects, reflecting variations in the relative barriers. The rate of decay is shown to scale approximately linearly with the number of infrared chromophores. The experimental findings are interpreted in terms of calculated infrared absorption rates assuming a sudden-death limit.

2.
J Phys Chem A ; 117(36): 8855-63, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-23941584

ABSTRACT

The reactions of nitrous oxide decorated rhodium clusters, RhnN2O(+) (n = 5, 6), have been studied by Fourier transform ion cyclotron resonance mass spectrometry. Collision induced dissociation with Ar is shown to lead to one of two processes; desorption of the intact N2O moiety (indicating molecular adsorption in the parent cluster) or N2O decomposition liberating molecular nitrogen with the latter becoming increasingly dominant at higher collision energies. Consistent with the results of earlier studies, which employed infrared excitation [Hermes, A. C.; et al. J. Phys. Chem. Lett. 2011, 2, 3053], Rh5ON2O(+) is observed to behave qualitatively differently to Rh5N2O(+) with decomposition of the nitrous oxide dominating the chemistry of the former. In other experiments, the reactivity of RhnN2O(+) clusters with CO has been studied. Chemisorption of (13)CO is calculated to deposit ca. 2 eV into the parent cluster, initiating a range of chemical processes on the cluster surface, which are fit to a simple reaction mechanism. Clear differences are again observed in the reaction branching ratios for Rh5N2O(+) and Rh6N2O(+) parent cluster ions. For the n = 5 cluster, the combined N2O reduction/CO oxidation is the most significant reaction channel, while the n = 6 cluster preferentially is oxidized to Rh6O(+) with loss of N2 and CO. Even larger differences are observed in the reactions of the N2O decorated cluster oxides, RhnON2O(+), for which more reaction possibilities arise. The results of all studies are discussed in relation to infrared driven processes on the same parent cluster species [Hamilton, S. M.; et al. J. Am. Chem. Soc. 2010, 132, 1448; J. Phys. Chem. A, 2011, 115, 2489].

3.
Chemistry ; 19(11): 3741-50, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23355418

ABSTRACT

Reactions of M(+) (H2 O)n (M=V, Cr, Mn, Fe, Co, Ni, Cu, Zn; n≤40) with NO were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Uptake of NO was observed for M=Cr, Fe, Co, Ni, Zn. The number of NO molecules taken up depends on the metal ion. For iron and zinc, NO uptake is followed by elimination of HNO and formation of the hydrated metal hydroxide, with strong size dependence. For manganese, only small HMnOH(+) (H2 O)n-1 species, which are formed under the influence of room-temperature black-body radiation, react with NO. Here NO uptake competes with HNO formation, both being primary reactions. The results illustrate that, in the presence of water, transition-metal ions are able to undergo quite particular and diverse reactions with NO. HNO is presumably formed through recombination of a proton and (3) NO(-) for M=Fe, Zn, preferentially for n=15-20. For manganese, the hydride in HMnOH(+) (H2 O)n-1 is involved in HNO formation, preferentially for n≤4. The strong size dependence of the HNO formation efficiency illustrates that each molecule counts in the reactions of small ionic water clusters.

4.
J Phys Chem A ; 117(6): 1011-20, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-22506540

ABSTRACT

The reactions of hydrated monovalent transition metal ions M(+)(H(2)O)(n), M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn, toward molecular oxygen, nitrous oxide, and carbon dioxide were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Clusters containing monovalent chromium, cobalt, nickel, or zinc were reactive toward O(2), while only hydrated cobalt was reactive toward N(2)O. A strongly size dependent reactivity was observed. Chromium and cobalt react very slowly with carbon dioxide. Nanocalorimetric analysis, (18)O(2) exchange, and collision induced dissociation (CID) experiments were done to learn more about the structure of the O(2) products. The thermochemistry for cobalt, nickel, and zinc is comparable to the formation of O(2)(-) from hydrated electrons. These results suggest that cobalt, nickel, and zinc are forming M(2+)/O(2)(-) ion pairs in the cluster, while chromium rather forms a covalently bound dioxygen complex in large clusters, followed by an exothermic dioxide formation in clusters with n ≤ 5. The results show that hydrated singly charged transition metal ions exhibit highly specific reactivities toward O(2), N(2)O, and CO(2).


Subject(s)
Carbon Dioxide/chemistry , Nitrous Oxide/chemistry , Oxygen/chemistry , Transition Elements/chemistry , Mass Spectrometry , Water/chemistry
5.
Chemistry ; 18(15): 4583-92, 2012 Apr 10.
Article in English | MEDLINE | ID: mdl-22389058

ABSTRACT

The intrinsic folding of peptides about a sodium ion has been investigated in detail by using infrared multiple photon dissociation (IRMPD) spectroscopy and a combination of theoretical methods. IRMPD spectroscopy was carried out on sodiated polyglycines G(n)-Na(+) (n=2-8), in both the fingerprint and N-H/O-H stretching regions. Interplay between experimental and computational approaches (classical and quantum) enables us to decipher most structural details. The most stable structures of the small peptides up to G(6)-Na(+) maximize metal-peptide interactions with all peptidic C=O groups bound to sodium. In addition, direct interactions between peptide termini are possible for G(6)-Na(+) and larger polyglycines. The increased flexibility of larger peptides leads to more complex folding and internal peptide structuration through γ or ß turns. A structural transition is found to occur between G(6)-Na(+) and G(7)-Na(+), leading to a structure with sodium coordination that becomes tri-dimensional for the latter. This transition was confirmed by H/D exchange experiments on G(n)-Na(+) (n=3-8). The most favorable hydrogen-bonding pattern in G(8)-Na(+) involves direct interactions between the peptide termini and opens the way to salt-bridge formation; however, there is only good agreement between experimental and computational data over the entire spectral range for the charge solvation isomer.


Subject(s)
Glycine/analogs & derivatives , Glycine/chemistry , Ions/chemistry , Peptides/chemistry , Sodium/chemistry , Hydrogen Bonding , Isomerism , Kinetics , Models, Molecular , Solutions , Spectrophotometry, Infrared
6.
J Phys Chem A ; 116(15): 3824-35, 2012 Apr 19.
Article in English | MEDLINE | ID: mdl-22435875

ABSTRACT

The chemistry of (H(2)O)(n)(•-), CO(2)(•-)(H(2)O)(n), and O(2)(•-)(H(2)O)(n) with small sulfur-containing molecules was studied in the gas phase by Fourier transform ion cyclotron resonance mass spectrometry. With hydrated electrons and hydrated carbon dioxide radical anions, two reactions with relevance for biological radiation damage were observed, cleavage of the disulfide bond of CH(3)SSCH(3) and activation of the thiol group of CH(3)SH. No reactions were observed with CH(3)SCH(3). The hydrated superoxide radical anion, usually viewed as major source of oxidative stress, did not react with any of the compounds. Nanocalorimetry and quantum chemical calculations give a consistent picture of the reaction mechanism. The results indicate that the conversion of e(-) and CO(2)(•-) to O(2)(•-) deactivates highly reactive species and may actually reduce oxidative stress. For reactions of (H(2)O)(n)(•-) with CH(3)SH as well as CO(2)(•-)(H(2)O)(n) with CH(3)SSCH(3), the reaction products in the gas phase are different from those reported in the literature from pulse radiolysis studies. This observation is rationalized with the reduced cage effect in reactions of gas-phase clusters.


Subject(s)
Disulfides/chemistry , Free Radicals/chemistry , Sulfhydryl Compounds/chemistry , Gases/chemistry , Mass Spectrometry/methods , Oxidative Stress
7.
Phys Chem Chem Phys ; 13(19): 8924-30, 2011 May 21.
Article in English | MEDLINE | ID: mdl-21442092

ABSTRACT

The reactions of the isomers of di- and trifluorobenzene with hydrated electrons (H(2)O)(n)(-), n = 19-70, have been studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. While Birch reduction, i.e. H atom transfer to the aromatic ring, was observed for all studied isomers, a strong dependence on the substitution pattern was observed for fluorine abstraction. Nanocalorimetry combined with G3 calculations are used to analyze the thermochemistry of the reactions. Fluorine abstraction is at least 100 kJ mol(-1) more exothermic than Birch reduction, yet the latter is the dominant reaction pathway for all three difluorobenzene isomers. Fluorine abstraction and Birch reduction face activation barriers of comparable magnitude. The relative barrier height is sensitive to the substitution pattern. Birch reduction occurs selectively with 1,3- and 1,4-difluorobenzene in a nanoscale aqueous environment.


Subject(s)
Electrons , Fluorobenzenes/chemistry , Water/chemistry , Molecular Structure , Oxidation-Reduction , Stereoisomerism
9.
Phys Chem Chem Phys ; 12(15): 3772-9, 2010 Apr 21.
Article in English | MEDLINE | ID: mdl-20358037

ABSTRACT

A new variant of nanocalorimetry is proposed for the thermochemical analysis of ion-molecule reactions of hydrated ions in the gas phase. The average number of water molecules evaporating during the reaction is extracted by quantitative modeling of the average number of water molecules in the reactant and product cluster distribution as a function of time, taking into account black-body radiation induced dissociation. The method is tested on reactions of (H2O)n(-) with O2 and CO2, and the core exchange reaction of CO2(-)(H2O)n with O2 to yield O2(-)(H2O)n and CO2. Reproducible results are obtained for the number of water molecules evaporating. Nanocalorimetric analysis reveals a non-ergodic component of DelatE(ne) = 59 +/- 14 kJ mol(-1) in the core exchange reaction, most likely carried away by the neutral CO2 product. Extrapolation to solution phase values suggests hydration enthalpies of DeltaH(hyd) = -375 +/- 30 kJ mol(-1) for O2(-) and DeltaH(hyd) = -268 +/- 27 kJ mol(-1) for CO2(-).

10.
J Am Soc Mass Spectrom ; 21(5): 728-38, 2010 May.
Article in English | MEDLINE | ID: mdl-20189824

ABSTRACT

The structure of the sodiated peptide GGGGGGGG-Na(+) or G(8)-Na(+) was investigated by infrared multiple photon dissociation (IRMPD) spectroscopy and a combination of theoretical methods. IRMPD was carried out in both the fingerprint and N-H/O-H stretching regions. Modeling used the polarizable force field AMOEBA in conjunction with the replica-exchange molecular dynamics (REMD) method, allowing an efficient exploration of the potential energy surface. Geometries and energetics were further refined at B3LYP-D and MP2 quantum chemical levels. The IRMPD spectra indicate that there is no free C-terminus OH and that several N-Hs are free of hydrogen bonding, while several others are bound, however not very strongly. The structure must then be either of the charge solvation (CS) type with a hydrogen-bound acidic OH, or a salt bridge (SB). Extensive REMD searches generated several low-energy structures of both types. The most stable structures of each type are computed to be very close in energy. The computed energy barrier separating these structures is small enough that G(8)-Na(+) is likely fluxional with easy proton transfer between the two peptide termini. There is, however, good agreement between experiment and computations in the entire spectral range for the CS isomer only, which thus appears to be the most likely structure of G(8)-Na(+) at room temperature.


Subject(s)
Glycine/analogs & derivatives , Molecular Dynamics Simulation , Oligopeptides/chemistry , Peptides/chemistry , Sodium Compounds/chemistry , Spectrophotometry, Infrared/methods , Glycine/chemistry
11.
J Am Chem Soc ; 129(11): 3238-46, 2007 Mar 21.
Article in English | MEDLINE | ID: mdl-17315996

ABSTRACT

The reactions of water cluster anions (H2O)n-, n = 30-70, with hydrogen chloride have been studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. The first HCl taken up by the clusters is presumably ionically dissolved. The solvated electron recombines with the proton, which is thereby reduced to atomic hydrogen and evaporates from the cluster. This process is accompanied by blackbody radiation and collision induced loss of water molecules. Subsequent collisions lead to uptake of HCl and loss of H2O, yielding mixed clusters Cl-(HCl)m(H2O)n until they are saturated with HCl. Those saturated clusters lose H2O and HCl in a characteristic sequence. The final stage of the reaction, involving clusters with m = 0-4 and n = 0-6, is studied in detail with density functional theory calculations. The Cl-(HCl)4(H2O)6 cluster represents an example for supramolecular self-organization in the gas phase: it consists of a tetrahedral Cl-(HCl)4, connected on one side of the tetrahedron to a compact water hexamer.

13.
Phys Chem Chem Phys ; 7(5): 981-5, 2005 Mar 07.
Article in English | MEDLINE | ID: mdl-19791389

ABSTRACT

Hydrated singly charged zinc cations Zn (H2O)n, n approximately 6-53, were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Black-body radiation induced dissociation results exclusively in sequential loss of individual water molecules. In the reaction of Zn+ (H2O)n with gaseous HCl, Zn is oxidized and hydrogen reduced when a second HCl molecule is taken up, leading to the formation of ZnCl+ (HCl)(H2O)n-m cluster ions and evaporation of atomic hydrogen together with m H2O molecules. The results are compared with earlier studies of Mg+ (H2O)n, for which hydrogen formation is already observed without HCl in a characteristic size region. The difference between zinc and magnesium is rationalized with the help of density functional theory calculations, which indicate a distinct difference in the thermochemistry of the reactions involved. The generally accepted hydrated electron model for hydrogen formation in Mg+ (H2O)n is modified for zinc to account for the different reactivity.


Subject(s)
Hydrochloric Acid/chemistry , Hydrogen/chemistry , Water/chemistry , Zinc/chemistry , Cations/chemistry , Computer Simulation , Models, Chemical , Thermodynamics
15.
Chemistry ; 10(19): 4822-30, 2004 Oct 04.
Article in English | MEDLINE | ID: mdl-15372683

ABSTRACT

The gas-phase reactions of hydrated electrons with carbon dioxide and molecular oxygen were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Both CO2 and O2 react efficiently with (H2O)n- because they possess low-lying empty pi* orbitals. The molecular CO2- and O2- anions are concurrently solvated and stabilized by the water ligands to form CO2(-)(H2O)n and O2(-)(H2O)n. Core exchange reactions are also observed, in which CO2(-)(H2O)n is transformed into O2(-)(H2O)n upon collision with O2. This is in agreement with the prediction based on density functional theory calculations that O2(-)(H2O)n clusters are thermodynamically favored with respect to CO2(-)(H2O)n. Electron detachment from the product species is only observed for CO2(-)(H2O)2, in agreement with the calculated electron affinities and solvation energies.

16.
Rapid Commun Mass Spectrom ; 18(13): 1479-81, 2004.
Article in English | MEDLINE | ID: mdl-15216509

ABSTRACT

A route to efficient generation of C6H4+*, potentially the benzyne radical cation, is presented. Laser vaporization of Mg+* and supersonic expansion in helium doped with o-, m-, or p-C6H4F2 yields, among other ions, o-, m-, p-C6H4F2Mg+* complexes, but no C6H4+*. Collision-induced dissociation experiments show that the o-C6H4F2Mg+* complex can be converted into C6H4+* in a mildly energetic collision, with a center-of-mass energy around 1-2 eV. These conditions can also be reached in the ion source when argon is used as a carrier gas. In this way, mass spectra containing the desired m/z 76 peak, i.e. C6H4+*, are obtained.

18.
Chemistry ; 8(24): 5534-40, 2002 Dec 16.
Article in English | MEDLINE | ID: mdl-12458493

ABSTRACT

"Nanodroplets" consisting of a central ion surrounded by a solvation shell of water molecules provide an interesting medium for studies of aqueous transition-metal chemistry in the unusual oxidation state (I). While VI undergoes efficient, solvent shell dependent redox reactions to VII and VIII, the absence of any similar reactivity in aqueous CrI, Mn1, FeI, CoI, NiI, and CuI clusters is explained by a rapid precipitation of the corresponding single monochloride molecules from the nanosolutions.

19.
J Am Chem Soc ; 124(2): 172-3, 2002 Jan 16.
Article in English | MEDLINE | ID: mdl-11782159

ABSTRACT

Metal ions in unusual oxidation states can be introduced into water clusters using a standard laser vaporization source. Such nanosolutions of a single ion in typically 50 water molecules are comparable to a 1 M bulk solution, and their chemistry can be studied in the ion trap of a Fourier transform ion cyclotron resonance mass spectrometer. We find that a strong acid like hydrogen chloride oxidizes the early transition metal vanadium to the more common +III state, while later first row transition metals retain their unusual +I oxidation state, and the binary metal chlorides M(I)Cl precipitate.

SELECTION OF CITATIONS
SEARCH DETAIL
...