Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Radiat Res ; 199(6): 535-555, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37310880

ABSTRACT

Tools for radiation exposure reconstruction are required to support the medical management of radiation victims in radiological or nuclear incidents. Different biological and physical dosimetry assays can be used for various exposure scenarios to estimate the dose of ionizing radiation a person has absorbed. Regular validation of the techniques through inter-laboratory comparisons (ILC) is essential to guarantee high quality results. In the current RENEB inter-laboratory comparison, the performance quality of established cytogenetic assays [dicentric chromosome assay (DCA), cytokinesis-block micronucleus assay (CBMN), stable chromosomal translocation assay (FISH) and premature chromosome condensation assay (PCC)] was tested in comparison to molecular biological assays [gamma-H2AX foci (gH2AX), gene expression (GE)] and physical dosimetry-based assays [electron paramagnetic resonance (EPR), optically or thermally stimulated luminescence (LUM)]. Three blinded coded samples (e.g., blood, enamel or mobiles) were exposed to 0, 1.2 or 3.5 Gy X-ray reference doses (240 kVp, 1 Gy/min). These doses roughly correspond to clinically relevant groups of unexposed to low exposed (0-1 Gy), moderately exposed (1-2 Gy, no severe acute health effects expected) and highly exposed individuals (>2 Gy, requiring early intensive medical care). In the frame of the current RENEB inter-laboratory comparison, samples were sent to 86 specialized teams in 46 organizations from 27 nations for dose estimation and identification of three clinically relevant groups. The time for sending early crude reports and more precise reports was documented for each laboratory and assay where possible. The quality of dose estimates was analyzed with three different levels of granularity, 1. by calculating the frequency of correctly reported clinically relevant dose categories, 2. by determining the number of dose estimates within the uncertainty intervals recommended for triage dosimetry (±0.5 Gy or ±1.0 Gy for doses <2.5 Gy or >2.5 Gy), and 3. by calculating the absolute difference (AD) of estimated doses relative to the reference doses. In total, 554 dose estimates were submitted within the 6-week period given before the exercise was closed. For samples processed with the highest priority, earliest dose estimates/categories were reported within 5-10 h of receipt for GE, gH2AX, LUM, EPR, 2-3 days for DCA, CBMN and within 6-7 days for the FISH assay. For the unirradiated control sample, the categorization in the correct clinically relevant group (0-1 Gy) as well as the allocation to the triage uncertainty interval was, with the exception of a few outliers, successfully performed for all assays. For the 3.5 Gy sample the percentage of correct classifications to the clinically relevant group (≥2 Gy) was between 89-100% for all assays, with the exception of gH2AX. For the 1.2 Gy sample, an exact allocation to the clinically relevant group was more difficult and 0-50% or 0-48% of the estimates were wrongly classified into the lowest or highest dose categories, respectively. For the irradiated samples, the correct allocation to the triage uncertainty intervals varied considerably between assays for the 1.2 Gy (29-76%) and 3.5 Gy (17-100%) samples. While a systematic shift towards higher doses was observed for the cytogenetic-based assays, extreme outliers exceeding the reference doses 2-6 fold were observed for EPR, FISH and GE assays. These outliers were related to a particular material examined (tooth enamel for EPR assay, reported as kerma in enamel, but when converted into the proper quantity, i.e. to kerma in air, expected dose estimates could be recalculated in most cases), the level of experience of the teams (FISH) and methodological uncertainties (GE). This was the first RENEB ILC where everything, from blood sampling to irradiation and shipment of the samples, was organized and realized at the same institution, for several biological and physical retrospective dosimetry assays. Almost all assays appeared comparably applicable for the identification of unexposed and highly exposed individuals and the allocation of medical relevant groups, with the latter requiring medical support for the acute radiation scenario simulated in this exercise. However, extreme outliers or a systematic shift of dose estimates have been observed for some assays. Possible reasons will be discussed in the assay specific papers of this special issue. In summary, this ILC clearly demonstrates the need to conduct regular exercises to identify research needs, but also to identify technical problems and to optimize the design of future ILCs.


Subject(s)
Biological Assay , Blood Specimen Collection , Retrospective Studies , Cytokinesis , Electron Spin Resonance Spectroscopy
2.
Radiat Res ; 199(6): 556-570, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37018160

ABSTRACT

After large-scale radiation accidents where many individuals are suspected to be exposed to ionizing radiation, biological and physical retrospective dosimetry assays are important tools to aid clinical decision making by categorizing individuals into unexposed/minimally, moderately or highly exposed groups. Quality-controlled inter-laboratory comparisons of simulated accident scenarios are regularly performed in the frame of the European legal association RENEB (Running the European Network of Biological and Physical retrospective Dosimetry) to optimize international networking and emergency readiness in case of large-scale radiation events. In total 33 laboratories from 22 countries around the world participated in the current RENEB inter-laboratory comparison 2021 for the dicentric chromosome assay. Blood was irradiated in vitro with X rays (240 kVp, 13 mA, ∼75 keV, 1 Gy/min) to simulate an acute, homogeneous whole-body exposure. Three blood samples (no. 1: 0 Gy, no. 2: 1.2 Gy, no. 3: 3.5 Gy) were sent to each participant and the task was to culture samples, to prepare slides and to assess radiation doses based on the observed dicentric yields from 50 manually or 150 semi-automatically scored metaphases (triage mode scoring). Approximately two-thirds of the participants applied calibration curves from irradiations with γ rays and about 1/3 from irradiations with X rays with varying energies. The categorization of the samples in clinically relevant groups corresponding to individuals that were unexposed/minimally (0-1 Gy), moderately (1-2 Gy) or highly exposed (>2 Gy) was successfully performed by all participants for sample no. 1 and no. 3 and by ≥74% for sample no. 2. However, while most participants estimated a dose of exactly 0 Gy for the sham-irradiated sample, the precise dose estimates of the samples irradiated with doses >0 Gy were systematically higher than the corresponding reference doses and showed a median deviation of 0.5 Gy (sample no. 2) and 0.95 Gy (sample no. 3) for manual scoring. By converting doses estimated based on γ-ray calibration curves to X-ray doses of a comparable mean photon energy as used in this exercise, the median deviation decreased to 0.27 Gy (sample no. 2) and 0.6 Gy (sample no. 3). The main aim of biological dosimetry in the case of a large-scale event is the categorization of individuals into clinically relevant groups, to aid clinical decision making. This task was successfully performed by all participants for the 0 Gy and 3.5 Gy samples and by 74% (manual scoring) and 80% (semiautomatic scoring) for the 1.2 Gy sample. Due to the accuracy of the dicentric chromosome assay and the high number of participating laboratories, a systematic shift of the dose estimates could be revealed. Differences in radiation quality (X ray vs. γ ray) between the test samples and the applied dose effect curves can partly explain the systematic shift. There might be several additional reasons for the observed bias (e.g., donor effects, transport, experimental conditions or the irradiation setup) and the analysis of these reasons provides great opportunities for future research. The participation of laboratories from countries around the world gave the opportunity to compare the results on an international level.


Subject(s)
Chromosome Aberrations , Radioactive Hazard Release , Humans , Retrospective Studies , Radiometry/methods , Biological Assay/methods , Chromosomes , Dose-Response Relationship, Radiation
3.
Radiat Prot Dosimetry ; 172(1-3): 201-206, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27412510

ABSTRACT

The RABiT (Rapid Automated Biodosimetry Tool) is a dedicated Robotic platform for the automation of cytogenetics-based biodosimetry assays. The RABiT was developed to fulfill the critical requirement for triage following a mass radiological or nuclear event. Starting from well-characterized and accepted assays we developed a custom robotic platform to automate them. We present here a brief historical overview of the RABiT program at Columbia University from its inception in 2005 until the RABiT was dismantled at the end of 2015. The main focus of this paper is to demonstrate how the biological assays drove development of the custom robotic systems and in turn new advances in commercial robotic platforms inspired small modifications in the assays to allow replacing customized robotics with 'off the shelf' systems. Currently, a second-generation, RABiT II, system at Columbia University, consisting of a PerkinElmer cell::explorer, was programmed to perform the RABiT assays and is undergoing testing and optimization studies.


Subject(s)
Biological Assay/instrumentation , Chromosome Aberrations/radiation effects , Flow Cytometry/instrumentation , Radiometry/instrumentation , Robotics/instrumentation , Specimen Handling/instrumentation , Biological Assay/methods , Equipment Design , Equipment Failure Analysis , Humans , Pattern Recognition, Automated/methods , Radiation Dosage , Radiometry/trends , Robotics/methods , Specimen Handling/methods
4.
Cell Death Dis ; 5: e1268, 2014 May 29.
Article in English | MEDLINE | ID: mdl-24874740

ABSTRACT

Cockayne syndrome (CS) is a progressive developmental and neurodegenerative disorder resulting in premature death at childhood and cells derived from CS patients display DNA repair and transcriptional defects. CS is caused by mutations in csa and csb genes, and patients with csb mutation are more prevalent. A hallmark feature of CSB patients is neurodegeneration but the precise molecular cause for this defect remains enigmatic. Further, it is not clear whether the neurodegenerative condition is due to loss of CSB-mediated functions in adult neurogenesis. In this study, we examined the role of CSB in neurogenesis by using the human neural progenitor cells that have self-renewal and differentiation capabilities. In this model system, stable CSB knockdown dramatically reduced the differentiation potential of human neural progenitor cells revealing a key role for CSB in neurogenesis. Neurite outgrowth, a characteristic feature of differentiated neurons, was also greatly abolished in CSB-suppressed cells. In corroboration with this, expression of MAP2 (microtubule-associated protein 2), a crucial player in neuritogenesis, was also impaired in CSB-suppressed cells. Consistent with reduced MAP2 expression in CSB-depleted neural cells, tandem affinity purification and chromatin immunoprecipitation studies revealed a potential role for CSB in the assembly of transcription complex on MAP2 promoter. Altogether, our data led us to conclude that CSB has a crucial role in coordinated regulation of transcription and chromatin remodeling activities that are required during neurogenesis.


Subject(s)
Chromatin Assembly and Disassembly/physiology , DNA Helicases/metabolism , DNA Repair Enzymes/metabolism , Neural Stem Cells/metabolism , Neurites/metabolism , Neurogenesis/physiology , Transcription, Genetic/physiology , Adult , Cell Line , DNA Helicases/genetics , DNA Repair Enzymes/genetics , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Neural Stem Cells/cytology , Poly-ADP-Ribose Binding Proteins
5.
Oncogene ; 27(43): 5662-71, 2008 Sep 25.
Article in English | MEDLINE | ID: mdl-18542054

ABSTRACT

Histone H2A variant H2AX is a dose-dependent suppressor of oncogenic chromosome translocations. H2AX participates in DNA double-strand break repair, but its role in other DNA repair pathways is not known. In this study, role of H2AX in cellular response to alkylation DNA damage was investigated. Cellular sensitivity to two monofunctional alkylating agents (methyl methane sulfonate and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)) was dependent on H2AX dosage, and H2AX null cells were more sensitive than heterozygous cells. In contrast to wild-type cells, H2AX-deficient cells displayed extensive apoptotic death due to a lack of cell-cycle arrest at G(2)/M phase. Lack of G(2)/M checkpoint in H2AX null cells correlated well with increased mitotic irregularities involving anaphase bridges and gross chromosomal instability. Observation of elevated poly(ADP) ribose polymerase 1 (PARP-1) cleavage suggests that MNNG-induced apoptosis occurs by PARP-1-dependent manner in H2AX-deficient cells. Consistent with this, increased activities of PARP and poly(ADP) ribose (PAR) polymer synthesis were detected in both H2AX heterozygous and null cells. Further, we demonstrate that the increased PAR synthesis and apoptotic death induced by MNNG in H2AX-deficient cells are due to impaired activation of mitogen-activated protein kinase pathway. Collectively, our novel study demonstrates that H2AX, similar to PARP-1, confers cellular protection against alkylation-induced DNA damage. Therefore, targeting either PARP-1 or histone H2AX may provide an effective way of maximizing the chemotherapeutic value of alkylating agents for cancer treatment.


Subject(s)
Alkylating Agents/toxicity , DNA Damage , Histones/physiology , Methylnitronitrosoguanidine/toxicity , Animals , Apoptosis/drug effects , Cell Division/drug effects , Cell Line , Cytoprotection , DNA Repair/drug effects , Extracellular Signal-Regulated MAP Kinases/physiology , G2 Phase/drug effects , Humans , MAP Kinase Signaling System/drug effects , Mice , Poly (ADP-Ribose) Polymerase-1 , Poly Adenosine Diphosphate Ribose/biosynthesis , Poly(ADP-ribose) Polymerases/physiology
6.
Toxicology ; 193(1-2): 79-90, 2003 Nov 15.
Article in English | MEDLINE | ID: mdl-14599769

ABSTRACT

Nucleotide excision repair (NER) is a multistep process capable to remove a variety of DNA distorting lesions from prokaryotic and eukaryotic genomes. In eukaryotic cells, the process requires more than 30 proteins to perform the different steps, i.e. recognition of DNA damage, single strand incisions and excision of the lesion-containing DNA fragment and DNA repair synthesis/ligation. NER can operate via two subpathways: global genome repair (GGR) and a specialized pathway coupled to active transcription (transcription-coupled repair, TCR) and directed to DNA lesions in the transcribed strand of active genes. Both in vivo as well as in cultured cells the fast removal of transcription blocking lesions by TCR is crucial to escape from lethal effects of inhibited transcription inhibition The most delicate step in NER is the recognition of the DNA lesions in their different chromatin context and the mechanism of damage recognition in GGR and TCR is principally different and requires specific proteins. In GGR, the XPC-HR23B is essential for the formation of the incision complex. In TCR the Cockayne syndrome (CS) gene products are key players in the recognition of a stalled RNA polymerase the presumed signaling structure for repair of transcribed strands. In this study, we show that the extent of recovery of UV-inhibited transcription and TCR strictly depends on the amount of CSB protein as well as the amount of DNA damage present in the cell. This indicates that the ratio between DNA damage frequency and CSB protein concentration in the cell is rather critical for acute cellular response, i.e. recovery of inhibited transcription upon DNA damage infliction, and hence cellular survival.


Subject(s)
DNA Repair/genetics , Transcription, Genetic/genetics , Animals , Cockayne Syndrome/genetics , DNA Damage/genetics , Humans , Organelles/genetics
7.
Mutagenesis ; 16(3): 225-32, 2001 May.
Article in English | MEDLINE | ID: mdl-11320148

ABSTRACT

Proliferating cell nuclear antigen (PCNA), an auxiliary factor for DNA polymerase delta and epsilon, is involved in both DNA replication and repair. Previous studies in vitro have demonstrated the requirement of PCNA in the resynthesis step of nucleotide excision repair (NER) and base excision repair (BER). Using a native chromatin template isolated under near physiological conditions, we have analysed the involvement of PCNA in the BER pathway in different NER defective human cell lines. The repair sites and PCNA were visualized by indirect immunolabelling followed by fluorescence microscopy. The results indicate that exposure to X-rays triggers the induction of PCNA in all the three human fibroblast cell lines studied, namely normal, xeroderma pigmentosum group A (XP-A) and Cockayne syndrome group B (CS-B). In all the cell lines, induction of PCNA and repair patches occurred in a dose- and time-dependent fashion. Induction of repair patches in NER-deficient XP-A cells suggests that the X-ray-induced lesions are largely repaired via the BER pathway involving PCNA as one of the key components of this pathway. X-ray-induced repair synthesis was greatly inhibited by treatment of cells with DNA polymerase inhibitors aphidicolin and cytosine arabinoside. Interestingly, inhibition of repair resynthesis did not affect the intensity of PCNA staining in X-irradiated cells indicating that the PCNA may be required for the BER pathway at a step preceding the resynthesis step.


Subject(s)
DNA Repair , DNA/radiation effects , Fibroblasts/radiation effects , Proliferating Cell Nuclear Antigen/biosynthesis , Cell Line , Cells, Cultured , Chromatin/metabolism , Dose-Response Relationship, Radiation , Fibroblasts/metabolism , Humans , Microscopy, Fluorescence , Radiation, Ionizing , Time Factors , X-Rays
8.
Nucleic Acids Res ; 29(6): 1341-51, 2001 Mar 15.
Article in English | MEDLINE | ID: mdl-11239001

ABSTRACT

Proliferating cell nuclear antigen (PCNA), a processivity factor for DNA polymerases delta and epsilon, is involved in DNA replication as well as in diverse DNA repair pathways. In quiescent cells, UV light-induced bulky DNA damage triggers the transition of PCNA from a soluble to an insoluble chromatin-bound form, which is intimately associated with the repair synthesis by polymerases delta and epsilon. In this study, we investigated the efficiency of PCNA complex formation in response to ionizing radiation-induced DNA strand breaks in normal and radiation-sensitive Ataxia telangiectasia (AT) cells by immunofluorescence and western blot techniques. Exposure of normal cells to gamma-rays rapidly triggered the formation of PCNA foci in a dose-dependent manner in the nuclei and the PCNA foci (40-45%) co-localized with sites of repair synthesis detected by bromodeoxyuridine labeling. The chromatin-bound PCNA gradually declined with increasing post-irradiation times and almost reached the level of unirradiated cells by 6 h. The PCNA foci formed after gamma-irradiation was resistant to high salt extraction and the chromatin association of PCNA was lost after DNase I digestion. Interestingly, two radiosensitive primary fibroblast cell lines, derived from AT patients harboring homozygous mutations in the ATM gene, displayed an efficient PCNA redistribution after gamma-irradiation. We also analyzed the PCNA complex induced by a radiomimetic agent, Bleomycin (BLM), which produces predominantly single- and double-strand DNA breaks. The efficiency and the time course of PCNA complex induced by BLM were identical in both normal and AT cells. Our study demonstrates for the first time that the ATM gene product is not required for PCNA complex assembly in response to DNA strand breaks. Additionally, we observed an increased interaction of PCNA with the Ku70 and Ku80 heterodimer after DNA damage, suggestive of a role for PCNA in the non-homologous end-joining repair pathway of DNA strand breaks.


Subject(s)
Antigens, Nuclear , Chromatin/metabolism , DNA Damage , DNA Helicases , Proliferating Cell Nuclear Antigen/metabolism , Protein Serine-Threonine Kinases/metabolism , Ataxia Telangiectasia Mutated Proteins , Bleomycin/pharmacology , Blotting, Western , Bromodeoxyuridine/metabolism , Cell Cycle Proteins , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Cells, Cultured , DNA Repair , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Dimerization , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/radiation effects , Fluorescent Antibody Technique , Gamma Rays , Humans , Interphase , Kinetics , Ku Autoantigen , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Proliferating Cell Nuclear Antigen/chemistry , Protein Binding/drug effects , Protein Binding/radiation effects , Time Factors , Tumor Suppressor Proteins
9.
Mutat Res ; 485(2): 121-32, 2001 Mar 07.
Article in English | MEDLINE | ID: mdl-11182543

ABSTRACT

Transcription coupled repair (TCR), a special sub-pathway of nucleotide excision repair (NER), removes transcription blocking lesions rapidly from the transcribing strand of active genes. In this study, we have evaluated the importance of the TCR pathway in the induction of chromosomal aberrations and apoptosis in isogenic Chinese hamster cell lines, which differ in TCR efficiency. AA8 is the parental cell line, which is proficient in the genome overall repair of UV-C radiation induced 6-4 photoproducts (6-4 PP) and the repair of cyclobutane pyrimidine dimer (CPD) from the transcribing strand of active genes. UV61 cells (hamster homologue of human Cockayne's syndrome (CS) group B cells) originally isolated from AA8, exhibit proficient repair of 6-4 PP but are deficient in CPD removal by the TCR pathway. Upon UV-C irradiation of cells in G1-phase, UV61 showed a dramatic increase in apoptotic response as compared to AA8 cells. Abolition of TCR by treatment with alpha-amanitin (an inhibitor of RNA polymerase II) in AA8 cells also resulted in an elevated apoptotic response like that observed in UV61 cells treated with UV alone. This suggests that the lack of TCR is largely responsible for increased apoptotic response in UV61 cells. Furthermore, the chromosomal aberrations and sister chromatid exchange (SCE) induced by UV were also found to be higher in UV61 cells than in TCR proficient AA8 cells. This study shows that the increased chromosomal aberrations and apoptotic death in UV61 cells is due to their inability to remove CPD from the transcribing strand of active genes and suggests a protective role for TCR in the prevention of both chromosomal aberrations and apoptosis induced by DNA damage. Furthermore, flow cytometry analysis and time-course appearance of apoptotic cells suggest that the conversion of UV-DNA damage into chromosomal aberrations precedes and determines the apoptotic process.


Subject(s)
Apoptosis/genetics , Chromosome Aberrations/genetics , Cockayne Syndrome/genetics , DNA Repair/genetics , Transcription, Genetic/genetics , Amanitins/pharmacology , Animals , Cell Line , Cricetinae , Cricetulus , DNA/metabolism , DNA/radiation effects , DNA Repair/radiation effects , Dose-Response Relationship, Radiation , Female , Fluorescent Antibody Technique , Fluorescent Dyes , Interphase/drug effects , Nucleic Acid Synthesis Inhibitors/pharmacology , Ovary/cytology , Ovary/drug effects , Ovary/metabolism , Ovary/radiation effects , RNA/biosynthesis , Sister Chromatid Exchange/radiation effects , Transcription, Genetic/drug effects , Transcription, Genetic/radiation effects , Ultraviolet Rays
10.
Hum Mol Genet ; 10(5): 519-28, 2001 Mar 01.
Article in English | MEDLINE | ID: mdl-11181576

ABSTRACT

Ataxia-telangiectasia (AT) is an autosomally recessive human genetic disease with pleiotropic defects such as neurological degeneration, immunodeficiency, chromosomal instability, cancer susceptibility and premature aging. Cells derived from AT patients and ataxia-telangiectasia mutated (ATM)-deficient mice show slow growth in culture and premature senescence. ATM, which belongs to the PI3 kinase family along with DNA-PK, plays a major role in signaling the p53 response to DNA strand breaks. Telomere maintenance is perturbed in yeast strains lacking genes homologous to ATM and cells from patients with AT have short telomeres. We examined the length of individual telomeres in cells from ATM(-/-) mice by fluorescence in situ hybridization. Telomeres were extensively shortened in multiple tissues of ATM(-/-) mice. More than the expected number of telomere signals was observed in interphase nuclei of ATM(-/-) mouse fibroblasts. Signals corresponding to 5-25 kb of telomeric DNA that were not associated with chromosomes were also noticed in ATM(-/-) metaphase spreads. Extrachromosomal telomeric DNA was also detected in fibroblasts from AT patients and may represent fragmented telomeres or by-products of defective replication of telomeric DNA. These results suggest a role of ATM in telomere maintenance and replication, which may contribute to the poor growth of ATM(-/-) cells and increased tumor incidence in both AT patients and ATM(-/-) mice.


Subject(s)
Ataxia Telangiectasia/genetics , DNA/genetics , Protein Serine-Threonine Kinases/genetics , Telomere , Animals , Ataxia Telangiectasia Mutated Proteins , Blotting, Southern , Cell Cycle Proteins , DNA-Binding Proteins , Humans , In Situ Hybridization, Fluorescence , Mice , Mice, Knockout , Nucleic Acid Hybridization , Protein Serine-Threonine Kinases/physiology , Tumor Suppressor Proteins
11.
Nucleic Acids Res ; 28(16): 3151-9, 2000 Aug 15.
Article in English | MEDLINE | ID: mdl-10931931

ABSTRACT

Cockayne syndrome (CS) is a human genetic disorder characterized by post-natal growth failure, neurological abnormalities and premature aging. CS cells exhibit high sensitivity to UV light, delayed RNA synthesis recovery after UV irradiation and defective transcription-coupled repair (TCR). Two genetic complementation groups of CS have been identified, designated CS-A and CS-B. The CSB gene encodes a helicase domain and a highly acidic region N-terminal to the helicase domain. This study describes the genetic characterization of a CSB mutant allele encoding a full deletion of the acidic region. We have tested its ability to complement the sensitivity of UV61, the hamster homolog of human CS-B cells, to UV and the genotoxic agent N-acetoxy-2-acetylaminofluorene (NA-AAF). Deleting 39 consecutive amino acids, of which approximately 60% are negatively charged, did not impact on the ability of the protein to complement the sensitive phenotype of UV61 cells to either UV or NA-AAF. Our data indicate that the highly acidic region of CSB is not essential for the TCR and general genome repair pathways of UV- and NA-AAF-induced DNA lesions.


Subject(s)
Apoptosis , Cockayne Syndrome/genetics , DNA Helicases/genetics , DNA Repair , Sequence Deletion , Acetoxyacetylaminofluorene/pharmacology , Amino Acid Sequence , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Cricetinae , DNA Helicases/metabolism , DNA Repair/drug effects , DNA Repair/radiation effects , DNA Repair Enzymes , Genetic Complementation Test , Humans , Molecular Sequence Data , Poly-ADP-Ribose Binding Proteins , Proliferating Cell Nuclear Antigen/metabolism , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Transfection , Ultraviolet Rays
12.
Mutagenesis ; 15(4): 303-10, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10887208

ABSTRACT

Werner syndrome (WS) is a rare autosomal disorder characterized by premature aging exhibiting chromosome instability and predisposition to cancer. Cells derived from WS patients show a variety of constitutionally stable chromosomal aberrations as detected by conventional chromosome banding techniques. We have employed the fluorescence in situ hybridization (FISH) technique using painting probes for 12 different chromosomes to detect stable chromosome exchanges in three WS cell lines and three control cell lines. WS cell lines showed increased frequencies of both stable and unstable chromosome aberrations detected by FISH and Giemsa staining, respectively. One WS lymphoblastoid cell line (KO375) had a 5/12 translocation in all the cells and approximately 60% of the cells had an additional translocated chromosome 12. A high frequency of aneuploid cells was found in all the WS cell lines studied. Though WS cells are known to be chromosomally unstable, unlike other chromosome instability syndromes they are not sensitive to mutagenic agents. We studied the frequencies of X-ray-induced chromosomal aberrations in two WS cell lines and found an approximately 60% increase in the frequencies of fragments and no consistent increase in the frequencies of exchanges.


Subject(s)
Chromosome Aberrations , Chromosomes/radiation effects , Chromosomes/ultrastructure , In Situ Hybridization, Fluorescence/methods , Werner Syndrome/genetics , Cell Line , Cells, Cultured , Chromosome Painting , Chromosomes, Human, Pair 1/radiation effects , Chromosomes, Human, Pair 12/radiation effects , Chromosomes, Human, Pair 4/radiation effects , Chromosomes, Human, Pair 5/radiation effects , Dose-Response Relationship, Radiation , Humans , Microscopy, Fluorescence , Translocation, Genetic , X-Rays
13.
Gene ; 250(1-2): 15-30, 2000 May 30.
Article in English | MEDLINE | ID: mdl-10854775

ABSTRACT

Nucleotide excision repair (NER) is one of the major cellular pathways that removes bulky DNA adducts and helix-distorting lesions. The biological consequences of defective NER in humans include UV-light-induced skin carcinogenesis and extensive neurodegeneration. Understanding the mechanism of the NER process is of great importance as the number of individuals diagnosed with skin cancer has increased considerably in recent years, particularly in the United States. Rapid progress made in the DNA repair field since the early 1980s has revealed the complexity of NER, which operates differently in different genomic regions. The genomic heterogeneity of repair seems to be governed by the functional compartmentalization of chromatin into transcriptionally active and inactive domains in the nucleus. Two sub-pathways of NER remove UV-induced photolesions: (I) Global Genome Repair (GGR) and (II) Transcription Coupled Repair (TCR). GGR is a random process that occurs slowly, while the TCR, which is tightly linked to RNA polymerase II transcription, is highly specific and efficient. The efficiency of these pathways is important in avoiding cancer and genomic instability. Studies with cell lines derived from Cockayne syndrome (CS) and Xeroderma pigmentosum (XP) group C patients, that are defective in the NER sub-pathways, have yielded valuable information regarding the genomic heterogeneity of DNA repair. This review deals with the complexity of repair heterogeneity, its mechanism and interacting molecular pathways as well as its relevance in the maintenance of genomic integrity.


Subject(s)
DNA Repair/genetics , Genome, Human , Animals , DNA/genetics , DNA/metabolism , Genetic Heterogeneity , Humans
14.
Oncogene ; 19(4): 477-89, 2000 Jan 27.
Article in English | MEDLINE | ID: mdl-10698517

ABSTRACT

Cockayne syndrome (CS) is a human autosomal recessive disorder characterized by many neurological and developmental abnormalities. CS cells are defective in the transcription coupled repair (TCR) pathway that removes DNA damage from the transcribed strand of active genes. The individuals suffering from CS do not generally develop cancer but show increased neurodegeneration. Two genetic complementation groups (CS-A and CS-B) have been identified. The lack of cancer formation in CS may be due to selective elimination of cells containing DNA damage by a suicidal pathway. In this study, we have evaluated the role of the CSB gene in UV induced apoptosis in human and hamster cells. The hamster cell line UV61 carries a mutation in the homolog of the human CSB gene. We show that both human CS-B and hamster UV61 cells display increased apoptotic response following UV exposure compared with normal cells. The increased sensitivity of UV61 cells to apoptosis is complemented by the transfection of the wild type human CSB gene. In order to determine which functional domain of the CSB gene participates in the apoptotic pathway, we constructed stable cell lines with different CSB domain disruptions. UV61 cells were stably transfected with the human CSB cDNA containing a point mutation in the highly conserved glutamic acid residue in ATPase motif II. This cell line (UV61/ pc3.1-CSBE646Q) showed the same increased apoptosis as the UV61 cells. In contrast, cells containing a deletion in the acidic domain at the N-terminal end of the CSB protein had no effect on apoptosis. This indicates that the integrity of the ATPase domain of CSB protein is critical for preventing the UV induced apoptotic pathway. In primary human CS-B cells, the induction and stabilization of the p53 protein seems to correlate with their increased apoptotic potential. In contrast, no change in the level of either p53 or activation of mdm2 protein by p53 was observed in hamster UV61 cells after UV exposure. This suggests that the CSB dependent apoptotic pathway can occur independently of the transactivation potential of p53 in hamster cells.


Subject(s)
Adenosine Triphosphatases/physiology , Apoptosis/radiation effects , Cockayne Syndrome/pathology , DNA Helicases/physiology , DNA Repair/genetics , Nuclear Proteins , Proto-Oncogene Proteins c-bcl-2 , Ultraviolet Rays , Amino Acid Sequence , Animals , Apoptosis/physiology , Cell Line , Cockayne Syndrome/enzymology , Cockayne Syndrome/genetics , Cricetinae , Cricetulus , DNA/biosynthesis , DNA Helicases/chemistry , DNA Repair Enzymes , Genes, p53 , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Point Mutation , Poly-ADP-Ribose Binding Proteins , Protein Structure, Tertiary , Proto-Oncogene Proteins/analysis , Proto-Oncogene Proteins c-mdm2 , Proto-Oncogene Proteins p21(ras)/analysis , RNA/biosynthesis , RNA Polymerase II/antagonists & inhibitors , Radiation Tolerance/genetics , Recombinant Fusion Proteins/physiology , Sequence Deletion , Transcriptional Activation , Transfection , Tumor Suppressor Protein p53/physiology , Ultraviolet Rays/adverse effects , bcl-2-Associated X Protein
15.
Mutat Res ; 459(2): 123-33, 2000 Mar 20.
Article in English | MEDLINE | ID: mdl-10725663

ABSTRACT

Werner's syndrome (WS) is a rare autosomal recessive human disorder and the patients exhibit many symptoms of accelerated ageing in their early adulthood. The gene (WRN) responsible for WS has been biochemically characterised as a 3'-5' helicase and is homologous to a number of RecQ superfamily of helicases. The yeast SGS1 helicase is considered as a human WRN homologue and SGS1 physically interacts with topoisomerases II and III. In view of this, it has been hypothesised that the WRN gene may also interact with topoisomerases II and III. The purpose of this study is to determine whether the loss of function of WRN protein alters the sensitivity of WS cells to agents that block the action of topoisomerase II. This study deals with the comparison of the chromosomal damage induced by the two anti-topoisomerase II drugs, VP-16 and amsacrine, in both G1 and G2 phases of the cell cycle, in lymphoblastoid cells from WS patients and from a healthy donor. Our results show that the WS cell lines are hypersensitive to chromosome damage induced by VP-16 and amsacrine only in the G2 phase of the cell cycle. No difference either in the yield of the induced aberrations or SCEs was found after treatment of cells at G1 stage. These data might suggest that in WS cells, because of the mutation of the WRN protein, the inhibition of topoisomerase II activity results in a higher rate of misrepair, probably due to some compromised G2 phase processes involving the WRN protein.


Subject(s)
Amsacrine/pharmacology , DNA Helicases/physiology , Enzyme Inhibitors/pharmacology , Etoposide/pharmacology , G2 Phase , Topoisomerase II Inhibitors , Werner Syndrome/enzymology , Cell Line, Transformed , DNA Damage , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Topoisomerases, Type II/metabolism , Exodeoxyribonucleases , Humans , Nucleic Acid Synthesis Inhibitors/pharmacology , RecQ Helicases , Werner Syndrome Helicase
16.
Mol Biol Cell ; 10(11): 3583-94, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10564257

ABSTRACT

Cockayne syndrome (CS) is a human genetic disorder characterized by UV sensitivity, developmental abnormalities, and premature aging. Two of the genes involved, CSA and CSB, are required for transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes certain lesions rapidly and efficiently from the transcribed strand of active genes. CS proteins have also been implicated in the recovery of transcription after certain types of DNA damage such as those lesions induced by UV light. In this study, site-directed mutations have been introduced to the human CSB gene to investigate the functional significance of the conserved ATPase domain and of a highly acidic region of the protein. The CSB mutant alleles were tested for genetic complementation of UV-sensitive phenotypes in the human CS-B homologue of hamster UV61. In addition, the CSB mutant alleles were tested for their ability to complement the sensitivity of UV61 cells to the carcinogen 4-nitroquinoline-1-oxide (4-NQO), which introduces bulky DNA adducts repaired by global genome repair. Point mutation of a highly conserved glutamic acid residue in ATPase motif II abolished the ability of CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery, and gene-specific repair. These data indicate that the integrity of the ATPase domain is critical for CSB function in vivo. Likewise, the CSB ATPase point mutant failed to confer cellular resistance to 4-NQO, suggesting that ATP hydrolysis is required for CSB function in a TCR-independent pathway. On the contrary, a large deletion of the acidic region of CSB protein did not impair the genetic function in the processing of either UV- or 4-NQO-induced DNA damage. Thus the acidic region of CSB is likely to be dispensable for DNA repair, whereas the ATPase domain is essential for CSB function in both TCR-dependent and -independent pathways.


Subject(s)
Adenosine Triphosphatases/genetics , DNA Helicases/genetics , DNA Repair/genetics , 4-Nitroquinoline-1-oxide/pharmacology , Adenosine Triphosphatases/chemistry , Amino Acid Sequence , Animals , Cell Line , Cell Survival , Clone Cells/radiation effects , Cockayne Syndrome/genetics , Cricetinae , DNA Damage , DNA Helicases/chemistry , DNA Repair Enzymes , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Poly-ADP-Ribose Binding Proteins , Pyrimidine Dimers/genetics , RNA, Messenger/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Transfection , Ultraviolet Rays
17.
Nucleic Acids Res ; 27(22): 4476-82, 1999 Nov 15.
Article in English | MEDLINE | ID: mdl-10536158

ABSTRACT

Proliferating cell nuclear antigen (PCNA), a processivity factor for DNA polymerases delta and epsilon, is essential for both DNA replication and repair. PCNA is required in the resynthesis step of nucleotide excision repair (NER). After UV irradiation, PCNA translocates into an insoluble protein complex, most likely associated with the nuclear matrix. It has not previously been investigated in vivo whether PCNA complex formation also takes place after oxidative stress. In this study, we have examined the involvement of PCNA in the repair of oxidative DNA damage. PCNA complex formation was studied in normal human cells after treatment with hydrogen peroxide, which generates a variety of oxidative DNA lesions. PCNA was detected by two assays, immunofluorescence and western blot analyses. We observed that PCNA redistributes from a soluble to a DNA-bound form during the repair of oxidative DNA damage. PCNA complex formation was analyzed in two human natural mutant cell lines defective in DNA repair: xeroderma pigmentosum group A (XP-A) and Cockayne syndrome group B (CS-B). XP-A cells are defective in overall genome NER while CS-B cells are defective only in the preferential repair of active genes. Immunofluorescent detection of PCNA complex formation was similar in normal and XP-A cells, but was reduced in CS-B cells. Consistent with this observation, western blot analysis in CS-B cells showed a reduction in the ratio of PCNA relocated as compared to normal and XP-A cells. The efficient PCNA complex formation observed in XP-A cells following oxidative damage suggests that formation of PCNA-dependent repair foci may not require the XPA gene product. The reduced PCNA complex formation observed in CS-B cells suggests that these cells are defective in the processing of oxidative DNA damage.


Subject(s)
Cockayne Syndrome/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Xeroderma Pigmentosum/metabolism , Blotting, Western , Cells, Cultured , Cockayne Syndrome/pathology , DNA/drug effects , DNA/radiation effects , DNA Damage , DNA Repair , Fluorescent Antibody Technique , Humans , Hydrogen Peroxide/pharmacology , Oxidative Stress/physiology , Proliferating Cell Nuclear Antigen/chemistry , Protein Conformation , Ultraviolet Rays , Xeroderma Pigmentosum/pathology
18.
Mol Biol Cell ; 10(8): 2655-68, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10436020

ABSTRACT

Werner syndrome (WS) is a human progeroid syndrome characterized by the early onset of a large number of clinical features associated with the normal aging process. The complex molecular and cellular phenotypes of WS involve characteristic features of genomic instability and accelerated replicative senescence. The gene involved (WRN) was recently cloned, and its gene product (WRNp) was biochemically characterized as a helicase. Helicases play important roles in a variety of DNA transactions, including DNA replication, transcription, repair, and recombination. We have assessed the role of the WRN gene in transcription by analyzing the efficiency of basal transcription in WS lymphoblastoid cell lines that carry homozygous WRN mutations. Transcription was measured in permeabilized cells by [3H]UTP incorporation and in vitro by using a plasmid template containing the RNA polymerase II (RNA pol II)-dependent adenovirus major late promoter. With both of these approaches, we find that the transcription efficiency in different WS cell lines is reduced to 40-60% of the transcription in cells from normal individuals. This defect can be complemented by the addition of normal cell extracts to the chromatin of WS cells. Addition of purified wild-type WRNp but not mutated WRNp to the in vitro transcription assay markedly stimulates RNA pol II-dependent transcription carried out by nuclear extracts. A nonhelicase domain (a direct repeat of 27 amino acids) also appears to have a role in transcription enhancement, as revealed by a yeast hybrid-protein reporter assay. This is further supported by the lack of stimulation of transcription when mutant WRNp lacking this domain was added to the in vitro assay. We have thus used several approaches to show a role for WRNp in RNA pol II transcription, possibly as a transcriptional activator. A deficit in either global or regional transcription in WS cells may be a primary molecular defect responsible for the WS clinical phenotype.


Subject(s)
DNA Helicases/genetics , DNA Helicases/metabolism , RNA Polymerase II/genetics , Transcription, Genetic , Amino Acid Sequence , Cell Extracts , Cell Line , Cell Membrane Permeability , Cell Nucleus/metabolism , Chromatin/genetics , DNA Helicases/isolation & purification , Exodeoxyribonucleases , Fluorescent Antibody Technique , Genetic Complementation Test , Humans , Molecular Sequence Data , Mutation , Plasmids/genetics , RNA/biosynthesis , RecQ Helicases , Repetitive Sequences, Amino Acid , Werner Syndrome/genetics , Werner Syndrome/pathology , Werner Syndrome Helicase
19.
Mol Biol Cell ; 10(7): 2119-29, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10397753

ABSTRACT

The protein p21(Cip1, Waf1, Sdi1) is a potent inhibitor of cyclin-dependent kinases (CDKs). p21 can also block DNA replication through its interaction with the proliferating cell nuclear antigen (PCNA), which is an auxiliary factor for polymerase delta. PCNA is also implicated in the repair resynthesis step of nucleotide excision repair (NER). Previous studies have yielded contradictory results on whether p21 regulates NER through its interaction with PCNA. Resolution of this controversy is of interest because it would help understand how DNA repair and replication are regulated. Hence, we have investigated the effect of p21 on NER both in vitro and in vivo using purified fragments of p21 containing either the CDK-binding domain (N terminus) or the PCNA binding domain (C terminus) of the protein. In the in vitro studies, DNA repair synthesis was measured in extracts from normal human fibroblasts using plasmids damaged by UV irradiation. In the in vivo studies, we used intact and permeabilized cells. The results show that the C terminus of the p21 protein inhibits NER both in vitro and in vivo. These are the first in vivo studies in which this question has been examined, and we demonstrate that inhibition of NER by p21 is not merely an artificial in vitro effect. A 50% inhibition of in vitro NER occurred at a 50:1 molar ratio of p21 C-terminus fragment to PCNA monomer. p21 differentially regulates DNA repair and replication, with repair being much less sensitive to inhibition than replication. Our in vivo results suggest that the inhibition occurs at the resynthesis step of the repair process. It also appears that preassembly of PCNA at repair sites mitigates the inhibitory effect of p21. We further demonstrate that the inhibition of DNA repair is mediated via binding of p21 to PCNA. The N terminus of p21 had no effect on DNA repair, and the inhibition of DNA repair by the C terminus of p21 was relieved by the addition of purified PCNA protein.


Subject(s)
Cyclins/metabolism , DNA Repair , Cell Line , Cell Membrane Permeability , Cyclin-Dependent Kinase Inhibitor p21 , Cyclins/genetics , Cyclins/isolation & purification , Electroporation , Humans , Peptide Fragments/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
20.
Nucleic Acids Res ; 27(12): 2511-20, 1999 Jun 15.
Article in English | MEDLINE | ID: mdl-10352180

ABSTRACT

The nucleolus is a unique structural component of interphase nuclei where the ribosomal genes, trans-cribed by RNA polymerase I (RNA pol I), are organized. In the present study, the repair of UV-induced photolesions was investigated in the ribosomal DNA (rDNA) in relation to RNA pol I transcription. We used hamster cells because their repair phenotype permits the separate analysis of the major photo-products induced by UV light. Immunofluorescent labeling of UV-induced DNA repair and transcription sites showed that the nucleolar regions were defic-ient in DNA repair despite the presence of abundant RNA pol I transcription foci. Immunological staining indicated that various NER proteins, including TFIIH (subunits p62 and p89), p53, Gadd 45 and prolifer-ating cell nuclear antigen are all enriched in the nuclei but distinctly absent in nucleoli. This lack of enrichment of NER factors in the nucleolus may be responsible for the inefficient repair of photo-products in the rDNA. UV irradiation generates two major photoproducts, the cyclobutane pyrimidine dimers (CPDs) and the 6-4 photoproducts (6-4 PPs). The repair kinetics of these two lesions were assessed simultaneously by the immunological isolation of bromodeoxyuridine (BudR) containing excision repair patches using an antibody to BudR. We found that the repair of the photolesions was less efficient in the rDNA compared to that of the endo-genous housekeeping gene, dihydrofolate reductase (DHFR). Gene specific repair of each of these two photoproducts was then measured separately in the rDNA and in the DHFR gene, which is transcribed by RNA pol II. The removal of CPDs was deficient in the rDNA as compared to the DHFR gene. On the contrary, 6-4 PPs were removed efficiently from the rDNA although somewhat slower than from the DHFR gene. The relatively efficient repair of 6-4 PPs in the rDNA is consistent with the notion that the 6-4 PPs are repaired efficiently in different genomic regions by the global genome repair pathway.


Subject(s)
DNA Repair , DNA, Ribosomal/genetics , Pyrimidine Dimers/genetics , Animals , Antibodies/immunology , Bromodeoxyuridine/immunology , CHO Cells , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , Chromatin , Cricetinae , DNA, Ribosomal/radiation effects , Fluorescent Antibody Technique, Direct , Pyrimidine Dimers/chemistry , Transcription Factors/metabolism , Transcription, Genetic , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...