Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 146: 106086, 2023 10.
Article in English | MEDLINE | ID: mdl-37639932

ABSTRACT

Medicinal plants play a prodigious role in the wound-healing process. Tridax procumbens (TP) has been proven to show strong antimicrobial activity against Staphylococcus aureus and could heal skin infections. Identifying mechanical properties of TP in his solid state and mixed with carboxymethylcellulose (CMC) have never been studied before. In this study, fresh TP liquid extracts blended with carboxymethylcellulose (CMC) biofilm were developed through the solution casting method. The casted film was tested for tensile strength through the Universal Tensile Tester (UTT), and the results were compared with the Finite Element Numerical Model (FEM) through the FEM code developed on the ANSYS solver. The experimental mean tensile test results for pure CMC were found as follows: tensile stress at the maximum of 15.31 MPa, modulus of elasticity of 7,24 GPa, the density of 1,62 g/cm3, and Poisson's ratio of 0.22. The experimental mean tensile test results for pure CMC/TP 50% were as follows: tensile stress at the maximum of 26.2 MPa, modulus of elasticity of 2.092 GPa, and density of 1.276 g/cm3. After several iterations, the following results were found for pure TP: modulus of elasticity of 0.225 GPa, a density of 0.93 g/cm3, and Poisson's ratio of 0.4 through FEM using inverse method technique. The experimental results were compared with the FEM solutions, which were found to be very close to the experimental results. The TP/CMC bio-membrane could be applied as a good wound dressing in biomedical applications. Mechanical properties found in this paper can contribute to the valorization of TP usage in several medical curing films applications.


Subject(s)
Anti-Infective Agents , Gastropoda , Animals , Carboxymethylcellulose Sodium , Anti-Infective Agents/pharmacology , Bandages , Biofilms , Elasticity
SELECTION OF CITATIONS
SEARCH DETAIL
...