Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 809: 146024, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34673207

ABSTRACT

Using cell cultures of human origin for the propagation of influenza virus is an attractive way to preserve its glycosylation profile and antigenic properties, which is essential in influenza surveillance and vaccine production. However, only few cell lines are highly permissive to influenza virus, and none of them are of human origin. The barrier might be associated with host restriction factors inhibiting influenza growth, such as AnxA6 protein counteracting the process of influenza virion packaging. In the presented work we explore the CRISPR-Cas9 mediated knockout of ANXA6 gene as a way to overcome the host restriction barrier and increase the susceptibility of human cell line to influenza infection. By CRISPR-Cas9 genome editing we modified HEK293FT cells and obtained several clones defective in the ANXA6 gene. The replication of the influenza A virus in original HEK293FT cells and the HEK293FT-ANXA6-/- mutant cells was compared in growth curve experiments. By combination of methods including TCID assay and flow cytometry we showed that accumulation of influenza A virus in the mutant HEK293FT-ANXA6-/- cells significantly exceeded the virus titer in the original HEK293FT cells.


Subject(s)
Annexin A6/genetics , Host-Pathogen Interactions/genetics , Influenza A virus/physiology , Virus Replication/physiology , Annexin A6/metabolism , CRISPR-Cas Systems , Gene Knockout Techniques , HEK293 Cells , Humans , Influenza A virus/pathogenicity , Virion/physiology
2.
Front Pharmacol ; 10: 1246, 2019.
Article in English | MEDLINE | ID: mdl-31780925

ABSTRACT

CRISPR technologies are nowadays widely used for targeted knockout of numerous protein-coding genes and for the study of various processes and metabolic pathways in human cells. Most attention in the genome editing field is now focused on the cleavage of protein-coding genes or genes encoding long non-coding RNAs (lncRNAs), while the studies on targeted knockout of intron-encoded regulatory RNAs are sparse. Small nucleolar RNAs (snoRNAs) present a class of non-coding RNAs encoded within the introns of various host genes and involved in post-transcriptional maturation of ribosomal RNAs (rRNAs) in eukaryotic cells. Box C/D snoRNAs direct 2'-O-methylation of rRNA nucleotides. These short RNAs have specific elements in their structure, namely, boxes C and D, and a target-recognizing region. Here, we present the study devoted to CRISPR/Cas9-mediated editing of box C/D snoRNA genes in Gas5. We obtained monoclonal cell lines carrying mutations in snoRNA genes and analyzed the levels of the mutant box C/D snoRNA as well as the 2'-O-methylation status of the target rRNA nucleotide in the obtained cells. Mutations in SNORD75 in the obtained monoclonal cell line were shown to result in aberrant splicing of Gas5 with exclusion of exons 3 to 5, which was confirmed by RT-PCR and RNA-Seq. The obtained results suggest that SNORD75 contains an element for binding of some factors regulating maturation of Gas5 pre-lncRNA. We suggest that METTL3/METTL14 is among such factors, and m6A-methylation pathways are involved in regulation of Gas5 splicing. Our results shell light on the role of SNORDs in regulating splicing of the host gene.

3.
Genes (Basel) ; 9(11)2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30400232

ABSTRACT

Short nuclear regulatory RNAs play a key role in the main stages of maturation of the precursors of the major RNA species. Small nuclear RNAs (snRNAs) form the core of the spliceosome and are responsible for the splicing of pre-mRNA molecules. Small nucleolar RNAs (snoRNAs) direct post-transcriptional modification of pre-rRNAs. A promising strategy for the development of non-coding RNA (ncRNAs) mimicking molecules is the introduction of modified nucleotides, which are normally present in natural ncRNAs, into the structure of synthetic RNAs. We have created a set of snoRNAs and snRNA analogs and studied the effect of base modifications, specifically, pseudouridine (Ψ) and 5-methylcytidine (m5C), on the immune-stimulating and cytotoxic properties of these RNAs. Here, we performed a whole-transcriptome study of the influence of synthetic snoRNA analogs with various modifications on gene expression in human cells. Moreover, we confirmed the role of PKR in the recognition of snoRNA and snRNA analogs using the short hairpin RNA (shRNA) technique. We believe that the data obtained will contribute to the understanding of the role of nucleotide modification in ncRNA functions, and can be useful for creating the agents for gene regulation based on the structure of natural snoRNAs and snRNAs.

SELECTION OF CITATIONS
SEARCH DETAIL
...