Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37103739

ABSTRACT

Microbial communities' resident in the mushroom fruiting body and the soil around it play critical roles in the growth and propagation of the mushroom. Among the microbial communities associated with psychedelic mushrooms and the rhizosphere soil, bacterial communities are considered vital since their presence greatly influences the health of the mushrooms. The present study aimed at finding the microbiota present in the psychedelic mushroom Psilocybe cubensis and the soil the mushroom inhabits. The study was conducted at two different locations in Kodaikanal, Tamil Nadu, India. The composition and structure of microbial communities in the mushroom fruiting body and the soil were deciphered. The genomes of the microbial communities were directly assessed. High-throughput amplicon sequencing revealed distinct microbial diversity in the mushroom and the related soil. The interaction of environmental and anthropogenic factors appeared to have a significant impact on the mushroom and soil microbiome. The most abundant bacterial genera were Ochrobactrum, Stenotrophomonas, Achromobacter, and Brevundimonas. Thus, the study advances the knowledge of the composition of the microbiome and microbial ecology of a psychedelic mushroom, and paves the way for in-depth investigation of the influence of microbiota on the mushroom, with special emphasis on the impact of bacterial communities on mushroom growth. Further studies are required for a deeper understanding of the microbial communities that influence the growth of P. cubensis mushroom.

2.
Heliyon ; 6(9): e04953, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33005785

ABSTRACT

Focusing on the huge importance associated in developing functional materials, this research study describes the synthesis, characterization of morphology, bactericidal activity and cytotoxic effect of iron oxide nanoparticles (IONPs). IONPs have been successfully fabricated through thermal decomposition of a diiron(III) complex precursor. The morphology of the nanoparticle has been delineated with different spectroscopic and analytic methods. Scanning and transmission electron microscopy (FE-SEM and HR-TEM) analyses estimate the cross linked porous structure of IONPs with an average size ~97 nm. Dynamic light scattering (DLS) study of IONPs determines the hydrodynamic diameter as 104 nm. The cytotoxic behavior of IONPs has been examined against human lung cancer cell line (A549) through different fluorescence staining studies which ensure the mode of apoptosis for cell death of A549. Furthermore, measurement of reactive oxygen species suggests the destruction of mitochondrial membrane of Staphylococcus aureus, leading to effective bactericidal propensity which holds a good promise for IONPs to become a clinically approved antibacterial agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...