Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(8): 3679-3691, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36780329

ABSTRACT

We set out to design and synthesize bipodal ligands with the phenyl group as the spacer and varied the substitution on the spacer between ortho (L1), meta (L2), and para (L3). The respective ligands and complexes containing either p-cymene (PL1-PL3) or benzene (BL1-BL3) as the arene unit were synthesized and characterized successfully. The influence of the ligands due to substitution change on their coordination behavior was quite minimal; however, the differences were seen in the anticancer activity of the complexes. DFT studies revealed the structural variations between the three different substitutions, which was further confirmed by single-crystal X-ray diffraction studies. The anticancer activity of the complexes could be correlated with their rate of hydrolysis and their lipophilicity index as determined by UV-visible spectroscopy. The cell death mechanism of the active complexes was deduced to be apoptotic via staining assays, flow cytometry, and Western blot analysis.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ruthenium , Cell Line, Tumor , Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Ligands , Cymenes , Ruthenium/chemistry
2.
Inorg Chem Commun ; 134: 109029, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34729032

ABSTRACT

A water-soluble binuclear organometallic Ru-p-cymene complex [Ru(η6-p-cymene)(η2-L)]2 (1) was prepared from (E)-2-((1H-indol-3-yl)methylene)-N-phenylhydrazine-1-carbothioamide (HL) and [RuCl2(p-cymene)]2 in methanol at room temperature under inert atmosphere. The structure of binuclear complex was analyzed by UV-Visible, FT-IR, NMR and mass spectroscopic methods. The solid-state structure of the complex was ascertained by single crystal X-ray diffraction technique. The complex exhibited pseudo-octahedral (piano-stool) geometry around Ru(II) ion. The cytotoxic property of the ligand and complex along with cisplatin was investigated against A549-lung, MCF-7-breast, HeLa-cervical, HepG-2-liver, T24-urinary bladder and EA.hy926-endothelial cancer cells, and Vero-kidney epithelial normal cells. The complex exhibited superior activity than cisplatin against A549, HeLa and T24 cancer cells with the IC50 values of 7.70, 11.2, and 5.05 µM, respectively. The complexes were cytotoxic specifically to the cancer cells. Molecular docking studies showed good binding potential of the ligand and complex with the spike protein and main protease of SARS-CoV-2, indicating the promising role of these compounds as antiviral compounds.

3.
Dalton Trans ; 50(44): 16311-16325, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34730582

ABSTRACT

Six different acylthiourea ligands (L1-L6) and their corresponding Ru(II)-p-cymene complexes (P1-P6) were designed to explore the structure-activity relationship of the complexes upon aliphatic chain and aromatic conjugation on the C- and N-terminals, respectively. The compounds were synthesized and adequately characterized using various analytical and spectroscopic techniques. The structures of P2-P6, solved using single crystal X-ray diffraction (XRD), confirmed the neutral monodentate coordination of the S atoms of the acylthiourea ligands to Ru(II) ions. In silico studies showed an increase of lipophilicity for the ligands with an increase in alkyl chain length or aromatic conjugation at the C- or N-terminal, respectively. Subsequently, mitogen-activated protein kinases (MAPK) were predicted as one of the primary targets for the complexes, which showed good binding affinity towards extracellular signal-regulated kinases (ERK1, ERK2 and ERK5), c-Jun N-terminal kinase (JNK) and p38 of the MAPK pathway. Henceforth, the complexes were tested for their anticancer activity in lung carcinoma (A549) and cisplatin-resistant lung carcinoma (cisA549R) cells and human umbilical vein epithelial normal cells (HUVEC). Interestingly, an increase in chain length or aromatic conjugation led to an increase in the activity of the complexes, with P5 (7.73 and 13.04 µM) and P6 (6.52 and 14.45 µM) showing the highest activity in A549 and cisA549R cells, which is better than the positive control, cisplatin (8.72 and 44.28 µM). Remarkably, we report the highest activity yet observed for complexes of the type [(η6-p-cymene)RuIICl2(S-acylthiourea)] in the tested cell lines. Aqueous solution studies showed that complexes P5 and P6 are rapidly hydrolyzed to produce solely aquated species that remained stable for 24 h. Staining assays and flow cytometric analyses of P5 and P6 in A549 cells revealed that the complexes induced apoptosis and arrested the cell cycle predominantly in the S phase. In vivo studies demonstrated the higher toxicity of cisplatin and a comparatively higher survival rate of mice injected with the most active complex P6. Histological analyses revealed that treatment with P6 at high doses of up to 8 mg kg-1 did not cause any palpable damage to the tested organs.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Cymenes , Ruthenium , Thioamides , Thiourea , A549 Cells , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Biological Availability , Cell Survival/drug effects , Coordination Complexes/administration & dosage , Coordination Complexes/chemistry , Coordination Complexes/pharmacokinetics , Cymenes/administration & dosage , Cymenes/chemistry , Cymenes/pharmacokinetics , Female , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Intestinal Absorption , Ligands , Male , Mice, Inbred ICR , Mitogen-Activated Protein Kinases/metabolism , Molecular Docking Simulation , Ruthenium/administration & dosage , Ruthenium/chemistry , Ruthenium/pharmacokinetics , Thioamides/administration & dosage , Thioamides/chemistry , Thioamides/pharmacokinetics , Thiourea/administration & dosage , Thiourea/chemistry , Thiourea/pharmacokinetics
4.
Chemistry ; 27(26): 7418-7433, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33404126

ABSTRACT

Fourteen new RuII -arene (p-cymene/benzene) complexes (C1-C14) have been synthesized by varying the N-terminal substituent in the furoylthiourea ligand and satisfactorily characterized by using analytical and spectroscopic techniques. Electrostatic potential maps predicted that the electronic effect of the substituents was mostly localized, with some influence seen on the labile chloride ligands. The structure-activity relationships of the Ru-p-cymene and Ru-benzene complexes showed opposite trends. All the complexes were found to be highly toxic towards IMR-32 cancer cells, with C5 (Ru-p-cymene complex containing C6 H2 (CH3 )3 as N-terminal substituent) and C13 (Ru-benzene complex containing C6 H4 (CF3 ) as N-terminal substituent) showing the highest activity among each set of complexes, and hence they were chosen for further study. These complexes showed different behavior in aqueous solutions, and were also found to catalytically oxidize glutathione. They also promoted cell death by apoptosis and cell cycle arrest. Furthermore, the complexes showed good binding ability with the receptors Pim-1 kinase and vascular endothelial growth factor receptor 2, commonly overexpressed in cancer cells.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ruthenium , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Coordination Complexes/toxicity , Structure-Activity Relationship , Vascular Endothelial Growth Factor A
5.
Dalton Trans ; 49(27): 9411-9424, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32589180

ABSTRACT

The reactions of CuCl2·2H2O with chromone thiosemicarbazone ligands containing a -H or -CH3 substituent on terminal N yielded monometallic Cu(ii) complexes [Cu(HL1)Cl2] (1) and [Cu(HL2)Cl2] (2), whereas bimetallic Cu(ii) complexes [Cu(µ-Cl)(HL3)]2Cl2 (3), [Cu(µ-Cl)(HL4)]2Cl2 (4) and [Cu(µ-Cl)(L5)]2 (5) were obtained when a -C2H5, -C6H11 or -C6H5 substituent was present, respectively, in the ligands. The complexes were characterized using elemental analyses, UV-Vis, FT-IR, EPR, mass and TGA studies. The structures of neutral monometallic and dicationic bimetallic complexes were confirmed by single crystal X-ray diffraction, and they exhibited a distorted square pyramidal geometry around Cu(ii) ions. The catecholase-mimicking activity of complexes 1-5 was examined spectrophotometrically, and the results revealed that all the complexes except 5 had the ability to oxidize 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ) under aerobic conditions with moderate turnover numbers. In order to find the possible complex-substrate intermediates, a mass spectrometry study was carried out for complexes 1-4 in the presence of 3,5-DTBC. The phosphatase-like activity of 1-5 was also investigated using 4-nitrophenylphosphate (4-NPP) as a model substrate. All the complexes exhibited excellent phosphatase activity in DMF-H2O medium. The complexes displayed significant biomolecular interactions and antioxidant potential. Complex 3 showed good interaction with apoptotic CASP3 protein, VEGFR2 and PIM-1 kinase receptors as revealed by a molecular docking study. Complexes (3-5) exhibited promising cytotoxicity against HeLa-cervical cancer cells with IC50 values of 2.24 (3), 2.25 (4) and 3.77 (5) µM, respectively, and showed a two-fold higher activity than cisplatin. The active complex 3 showed complete inhibition of colony formation at 10 µM concentration. In addition, the acridine orange (AO)/ethidium bromide (EB) staining and real-time live cell imaging results confirmed that complex 3 induced cell death in HeLa cells.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Copper/pharmacology , Thiosemicarbazones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Caspase 3/chemistry , Catechols/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Copper/chemistry , DNA/chemistry , Drug Screening Assays, Antitumor , Humans , Hydrolysis , Molecular Docking Simulation , Molecular Structure , Optical Imaging , Oxidation-Reduction , Phosphates/chemistry , Proto-Oncogene Proteins c-pim-1/chemistry , Thiosemicarbazones/chemistry , Time Factors , Vascular Endothelial Growth Factor Receptor-2/chemistry
6.
ACS Omega ; 4(4): 6245-6256, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459766

ABSTRACT

Eight new organometallic Ru(II)-arene complexes of the type [RuCl2(η6-arene)(η1-S-aroylthiourea)] (arene = p-cymene or benzene) were synthesized in order to evaluate the effect of the arene moiety and the substituent of the aroylthiourea ligand on the cytotoxicity of the complexes. The ligands (L1 and L2) and complexes (1-8) were characterized using analytical and spectroscopic (UV-visible, infrared, 1H NMR, 13C NMR, and mass) methods. The structure of the ligands (L1 and L2) and complexes (1 and 3-6) was obtained from single-crystal X-ray diffraction studies. The cytotoxicity of the complexes was evaluated against four different cancer cell lines: MCF-7 (breast), COLO 205 (colon), A549 (lung), and IMR-32 (neuroblastoma). All the complexes showed good cytotoxicity and the highest was in the IMR-32 cell line, which articulates the specificity of these complexes toward the IMR-32 cancer cell line. The complexes 5, 7, and 8 exhibited remarkable cytotoxicity in the entire cancer cell lines tested, which was comparable with the standard drug, cisplatin. The anticancer mechanism of the complexes 3 and 7 in IMR-32 cells was evaluated by bright-field microscopy, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), DNA damage, and caspase-3 analyses. The cells treated with the complexes showed upregulated caspase-3 compared to the control, and it was found that ROS and MMP were dose-dependent on analysis. Also, bright-field microscopy and 4',6-diamidino-2-phenylindole (DAPI) staining have correspondingly shown cellular membrane blebbing and DNA damage, which were morphological hallmarks of apoptosis. The study concluded that the complexes promoted the oxidative stress-mediated apoptotic death of the cancer cells through the generation of intracellular ROS, depletion of MMP, and damage of the nuclear material.

SELECTION OF CITATIONS
SEARCH DETAIL
...