Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(1): e2310727120, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38150499

ABSTRACT

Intrinsically disordered regions (IDR) and short linear motifs (SLiMs) play pivotal roles in the intricate signaling networks governed by phosphatases and kinases. B56δ (encoded by PPP2R5D) is a regulatory subunit of protein phosphatase 2A (PP2A) with long IDRs that harbor a substrate-mimicking SLiM and multiple phosphorylation sites. De novo missense mutations in PPP2R5D cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Our single-particle cryo-EM structures of the PP2A-B56δ holoenzyme reveal that the long, disordered arms at the B56δ termini fold against each other and the holoenzyme core. This architecture suppresses both the phosphatase active site and the substrate-binding protein groove, thereby stabilizing the enzyme in a closed latent form with dual autoinhibition. The resulting interface spans over 190 Šand harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is coupled to an allosteric network responsive to phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations increase the holoenzyme activity and perturb the phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the normal variant.


Subject(s)
Protein Phosphatase 2 , Protein Phosphatase 2/metabolism , Jordan , Phosphorylation , Mutation , Holoenzymes/genetics , Holoenzymes/metabolism
2.
J Chem Phys ; 158(21)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37260014

ABSTRACT

Mutations in protein phosphatase 2A (PP2A) are connected to intellectual disability and cancer. It has been hypothesized that these mutations might disrupt the autoinhibition and phosphorylation-induced activation of PP2A. Since they are located far from both the active and substrate binding sites, it is unclear how they exert their effect. We performed allosteric pathway analysis based on molecular dynamics simulations and combined it with biochemical experiments to investigate the autoinhibition of PP2A. In the wild type (WT), the C-arm of the regulatory subunit B56δ obstructs the active and substrate binding sites exerting a dual autoinhibition effect. We find that the disease mutant, E198K, severely weakens the allosteric pathways that stabilize the C-arm in the WT. Instead, the strongest allosteric pathways in E198K take a different route that promotes exposure of the substrate binding site. To facilitate the allosteric pathway analysis, we introduce a path clustering algorithm for lumping pathways into channels. We reveal remarkable similarities between the allosteric channels of E198K and those in phosphorylation-activated WT, suggesting that the autoinhibition can be alleviated through a conserved mechanism. In contrast, we find that another disease mutant, E200K, which is in spatial proximity of E198, does not repartition the allosteric pathways leading to the substrate binding site; however, it may still induce exposure of the active site. This finding agrees with our biochemical data, allowing us to predict the activity of PP2A with the phosphorylated B56δ and provide insight into how disease mutations in spatial proximity alter the enzymatic activity in surprisingly different mechanisms.


Subject(s)
Protein Phosphatase 2 , Protein Phosphatase 2/genetics , Protein Phosphatase 2/chemistry , Protein Phosphatase 2/metabolism , Phosphorylation/genetics , Protein Domains , Mutation , Protein Binding
3.
bioRxiv ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37066309

ABSTRACT

An increasing number of mutations associated with devastating human diseases are diagnosed by whole-genome/exon sequencing. Recurrent de novo missense mutations have been discovered in B56δ (encoded by PPP2R5D), a regulatory subunit of protein phosphatase 2A (PP2A), that cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Single-particle cryo-EM structures show that the PP2A-B56δ holoenzyme possesses closed latent and open active forms. In the closed form, the long, disordered arms of B56δ termini fold against each other and the holoenzyme core, establishing dual autoinhibition of the phosphatase active site and the substrate-binding protein groove. The resulting interface spans over 190 Šand harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is close to an allosteric network responsive to activation phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations perturb the activation phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the wild variant.

4.
Elife ; 112022 08 04.
Article in English | MEDLINE | ID: mdl-35924897

ABSTRACT

Protein phosphatase 2A (PP2A) holoenzymes target broad substrates by recognizing short motifs via regulatory subunits. PP2A methylesterase 1 (PME-1) is a cancer-promoting enzyme and undergoes methylesterase activation upon binding to the PP2A core enzyme. Here, we showed that PME-1 readily demethylates different families of PP2A holoenzymes and blocks substrate recognition in vitro. The high-resolution cryoelectron microscopy structure of a PP2A-B56 holoenzyme-PME-1 complex reveals that PME-1 disordered regions, including a substrate-mimicking motif, tether to the B56 regulatory subunit at remote sites. They occupy the holoenzyme substrate-binding groove and allow large structural shifts in both holoenzyme and PME-1 to enable multipartite contacts at structured cores to activate the methylesterase. B56 interface mutations selectively block PME-1 activity toward PP2A-B56 holoenzymes and affect the methylation of a fraction of total cellular PP2A. The B56 interface mutations allow us to uncover B56-specific PME-1 functions in p53 signaling. Our studies reveal multiple mechanisms of PME-1 in suppressing holoenzyme functions and versatile PME-1 activities derived from coupling substrate-mimicking motifs to dynamic structured cores.


Subject(s)
Protein Phosphatase 2 , Cryoelectron Microscopy , Demethylation , Holoenzymes/metabolism , Methylation , Protein Phosphatase 2/metabolism
5.
Cell Rep ; 37(12): 110136, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34936873

ABSTRACT

Malignant cell transformation and the underlying reprogramming of gene expression require the cooperation of multiple oncogenic mutations. This cooperation is reflected in the synergistic regulation of non-mutant downstream genes, so-called cooperation response genes (CRGs). CRGs affect diverse hallmark features of cancer cells and are not known to be functionally connected. However, they act as critical mediators of the cancer phenotype at an unexpectedly high frequency >50%, as indicated by genetic perturbations. Here, we demonstrate that CRGs function within a network of strong genetic interdependencies that are critical to the malignant state. Our network modeling methodology, TopNet, takes the approach of incorporating uncertainty in the underlying gene perturbation data and can identify non-linear gene interactions. In the dense space of gene connectivity, TopNet reveals a sparse topological gene network architecture, effectively pinpointing functionally relevant gene interactions. Thus, among diverse potential applications, TopNet has utility for identification of non-mutant targets for cancer intervention.


Subject(s)
Epistasis, Genetic , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Neoplasms/genetics , Oncogenes , Animals , Female , Genes, p53 , Genes, ras , Genotype , Humans , Male , Mice , Models, Genetic , Mutation
6.
Oncotarget ; 6(17): 14796-813, 2015 Jun 20.
Article in English | MEDLINE | ID: mdl-26142707

ABSTRACT

In searching for small-molecule compounds that inhibit proliferation and survival of diffuse large B-cell lymphoma (DLBCL) cells and may, therefore, be exploited as potential therapeutic agents for this disease, we identified the commonly used and well-tolerated antibiotic doxycycline as a strong candidate. Here, we demonstrate that doxycycline inhibits the growth of DLBCL cells both in vitro and in mouse xenograft models. In addition, we show that doxycycline accumulates in DLBCL cells to high concentrations and affects multiple signaling pathways that are crucial for lymphomagenesis. Our data reveal the deneddylating activity of COP-9 signalosome (CSN) as a novel target of doxycycline and suggest that doxycycline may exert its effects in DLBCL cells in part through a CSN5-HSP90 pathway. Consistently, knockdown of CSN5 exhibited similar effects as doxycycline treatment on DLBCL cell survival and HSP90 chaperone function. In addition to DLBCL cells, doxycycline inhibited growth of several other types of non-Hodgkin lymphoma cells in vitro. Together, our results suggest that doxycycline may represent a promising therapeutic agent for DLBCL and other non-Hodgkin lymphomas subtypes.


Subject(s)
Cell Proliferation/drug effects , Doxycycline/pharmacology , Lymphoma, Large B-Cell, Diffuse/drug therapy , Multiprotein Complexes/metabolism , Peptide Hydrolases/metabolism , Tumor Burden/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Blotting, Western , COP9 Signalosome Complex , Cell Survival/drug effects , Female , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Humans , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Non-Hodgkin/genetics , Lymphoma, Non-Hodgkin/metabolism , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Multiprotein Complexes/genetics , Peptide Hydrolases/genetics , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
7.
Cell Rep ; 7(4): 1143-55, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24794439

ABSTRACT

Mutations in p53 and RAS potently cooperate in oncogenic transformation, and correspondingly, these genetic alterations frequently coexist in pancreatic ductal adenocarcinoma (PDA) and other human cancers. Previously, we identified a set of genes synergistically activated by combined RAS and p53 mutations as frequent downstream mediators of tumorigenesis. Here, we show that the synergistically activated gene Plac8 is critical for pancreatic cancer growth. Silencing of Plac8 in cell lines suppresses tumor formation by blocking autophagy, a process essential for maintaining metabolic homeostasis in PDA, and genetic inactivation in an engineered mouse model inhibits PDA progression. We show that Plac8 is a critical regulator of the autophagic machinery, localizing to the lysosomal compartment and facilitating lysosome-autophagosome fusion. Plac8 thus provides a mechanistic link between primary oncogenic mutations and the induction of autophagy, a central mechanism of metabolic reprogramming, during PDA progression.


Subject(s)
Autophagy/genetics , Carcinoma, Pancreatic Ductal/genetics , Mutation , Pancreatic Neoplasms/genetics , Proteins/genetics , Animals , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Differentiation/genetics , Cell Line, Tumor , Disease Progression , Heterografts , Humans , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Promoter Regions, Genetic , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...