Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Biomed Mater ; 19(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38324889

ABSTRACT

This research study is primarily centred around calcination temperature and time influence on phase formation in bioactive glasses (BGs). In the present study, BG with a nominal composition of 45S5 was synthesized through the sol-gel process. The developed BGs then underwent heat treatment for various sintering durations and temperatures. X-ray diffraction (XRD) patterns of the BGs reveals that the sintering process led to the crystallization of both devitrite (Na2Ca3Si6O16) and combeite (Na2Ca2Si3O9) phases. The field emission scanning electron microscopy study divulges morphological alterations, from sheet-like to rod-like structures to eventually transforming into spherical and sheet-like structures. The surface area and Type-IV mesoporous porosity were validated through Brunauer Emmett Teller analysis, highlighting a notable increase in pore volume and mechanical strength at a lower sintering temperature.In vitroapatite formation was carried out in Hank's balance salt in order to evaluate the bioactivity of the glass. After 7 d of immersion in simulated body fluid (SBF), XRD patterns and scanning electron microscopy micrographs results showed that formation of hydroxyapatite layer on the surface of the BGs. The BG compatibility with erythrocytes (red blood cells) was also studied, and the results revealed that there was only a low 2% lysis, showing good hemocompatibility. The drug loading and release behaviour of the BGs was studied in thein vitroanalysis. The findings showed a high drug encapsulation effectiveness of up to 90% and continuous drug release from the BGs for 24 h. The materials biocompatibility was unambiguously confirmed by cytocompatibility and proliferation studies. This study provides compelling evidence for the exceptional efficacy and promise of the distinct 45S5 BGs in advancing the field of regenerative medicine.


Subject(s)
Biocompatible Materials , Durapatite , Biocompatible Materials/chemistry , Durapatite/chemistry , Crystallization/methods , Microscopy, Electron, Scanning , Glass/chemistry , Ceramics/chemistry
2.
Int J Biol Macromol ; 262(Pt 2): 130054, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342258

ABSTRACT

Chronic wounds, especially diabetic, foot and pressure ulcers are a major health problem affecting >10 % of the world's populace. Calcium phosphate materials, particularly, bioactive glasses (BG), used as a potential material for hard and soft tissue repair. This study combines nanostructured 45S5 BG with titania (TiO2) and alumina (Al2O3) into a composite via simple sol-gel method. Prepared composites with alginate (Alg) formed a bioactive nanocomposite hydrogel membrane via freezing method. X-ray diffraction revealed formation of two phases such as Na1.8Ca1.1Si6O14 and ß-Na2Ca4(PO4)2SiO4 in the silica network. Fourier transformed InfraRed spectroscopy confirmed the network formation and cross-linking between composite and alginate. <2 % hemolysis, optimal in vitro degradation and porosity was systematically evaluated up to 7 days, resulting in increasing membrane bioactivity. Significant cytocompatibility, cell migration and proliferation and a 3-4-fold increase in Collagen (Col) and Vascular Endothelial Growth Factor (VEGF) expression were obtained. Sustained delivery of 80 % Dox in 24 h and effective growth reduction of S. aureus and destruction of biofilm development against E. coli and S. aureus within 24 h. Anatomical fin regeneration, rapid re-epithelialization and wound closure were achieved within 14 days in both zebrafish and in streptozotocin (STZ) induced rat in vivo animal models with optimal blood glucose levels. Hence, the fabricated bioactive membrane can act as effective wound dressing material, for diabetic chronic infectious wounds.


Subject(s)
Diabetes Mellitus , Re-Epithelialization , Rats , Animals , Alginates/pharmacology , Staphylococcus aureus , Escherichia coli , Vascular Endothelial Growth Factor A/pharmacology , Zebrafish , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Oxides/pharmacology , Bandages
3.
Int J Biol Macromol ; 256(Pt 1): 128291, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029901

ABSTRACT

This study aims to develop chitosan-bioactive glass (BG) scaffolds for diabetic wound healing, toxicity valuation, and subcutaneous implantation in animals for biocompatibility assessment. The scaffolds were prepared by lyophilization technique. In specific BG without sodium (Na), composited with chitosan for better biological activities. The equipped scaffolds were studied for their physiochemical, biological, in vitro and in vivo performances. The chitosan and chitosan-BG (Na free) scaffolds show reliable biocompatibility, cytocompatibility, anti-oxidant, and tissue regeneration. The biocompatibility, toxicity assessments, and diabetic skin wound healing experiments were examined through in vivo studies using Sprague Dawley rats. The extracted tissue samples were analyzed using hematoxylin-eosin- (H and E) and Masson's trichrome staining. Further, tissue excised after scaffold implantation declared non-toxic, non-allergic, and anti-inflammatory nature of chitosan scaffolds. Moreover, the total ribonucleic acid (RNA) expression levels were measured using reverse transcription-polymerase chain reaction (RT-PCR) for the scaffolds against vascular endothelial growth factor (VEGF), and collagen type one (Col-1) primers. Admirably, the scaffolds achieved the best level of skin wound healing via tissue regeneration by increasing epithetical cell formation and collagen deposition. Thus, the biocompatibility, non-toxicity, anti-inflammatory, and wound healing efficiency proved that the chitosan-BG (Na free) scaffold can be readily substantial for wound healing.


Subject(s)
Chitosan , Diabetes Mellitus , Rats , Animals , Tissue Scaffolds , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Rats, Sprague-Dawley , Wound Healing , Collagen/metabolism , Anti-Inflammatory Agents , Models, Animal
4.
Chemosphere ; 346: 140655, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949178

ABSTRACT

Covalent Organic Frameworks (COFs) have emerged as a promising class of crystalline porous materials with customizable structures, high surface areas, and tunable functionalities. Their unique properties make them attractive candidates for addressing environmental contamination caused by pharmaceuticals, pesticides, industrial chemicals, persistent organic pollutants (POPs), and endocrine disruptors (EDCs). This review article provides a comprehensive overview of recent advancements and applications of COFs in removing and remedying various environmental contaminants. We delve into the synthesis, properties, and performance of COFs and their potential limitations and future prospects.


Subject(s)
Endocrine Disruptors , Environmental Pollutants , Metal-Organic Frameworks , Environmental Pollution , Industry
5.
Chem Commun (Camb) ; 60(2): 208-211, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38050703

ABSTRACT

This study presents the chemical transformation of nickel-based metal-organic frameworks into binary metal-organic frameworks by introducing cobalt metal ions. The resulting NiCo-BDC hierarchical nanostructure exhibited higher oxidation states, resulting in an impressive capacitance of 1431 F g-1. Additionally, the device based on this material exhibited exceptional capacity retention over 3000 cycles.

6.
Chemosphere ; 341: 140131, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690566

ABSTRACT

In regenerative medicine, blood vessel development is of utmost importance as it enables the restoration of blood flow to tissues, and facilitate rapid vascularization in clinical tissue-engineered grafts. Herein, we fabricate the nanocomposite hydrogels from BG (clinophosinaite), alginate, Polyethylene glycol (PEG) and Dexamethasone (DEX) for the dual applications of drug delivery and angiogenesis assay. The hydrogels were fabricated through cross-linking approach and termed as alginate/PEG (A), alginate/PEG/clinophosinaite (AC), and alginate/PEG/clinophosinaite/DEX (ACD) that further subjected to structural characterization, using powder X-ray diffraction, and fourier-transform infrared spectroscopy. Porous nanostructures and sheets were imaged using field emission scanning electron microscopy (FESEM), which aid in nutrient and oxygen transport to support angiogenesis. The nanocomposite hydrogels evidently demonstrated good hemocompatibility and fully hydrophilic (30.20°). By means of liquid displacement technique, the nanocomposite hydrogel achieves 47% of porosity with the compressive strength about 0.04 MPa. In alginate/PEG/clinophosinaite and alginate/PEG/clinophosinaite/DEX systems, water absorption capacity reached 85% in 6 h and maintained 90% retention after 12 h. Further, leachable tests revealed that the hydrogel had not deformed even after 24 h. In vitro drug release studies evidently divulge sustainable delivery of DEX from alginate/PEG/clinophosinaite/DEX hydrogel with superior characteristics for drug release. The angiogenesis assay also evidently revealed that the AC and ACD hydrogels, demonstrated higher angiogenic properties with, promoted blood vessel development.


Subject(s)
Polyethylene Glycols , Polymers , Nanogels , Alginates , Biocompatible Materials , Ceramics , Hydrogels
7.
J Mech Behav Biomed Mater ; 147: 106106, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37708780

ABSTRACT

Bioactive scaffolds with polymer and nanostructured bioactive glass-based composites are promising materials for regenerative applications in consequence of close mimics of natural bone composition. Poly methyl methacrylate (PMMA) is a highly preferred thermoplastic polymer for orthopedic applications as it has good biocompatibility. Different kinds of bioactive, biodegradable as well as biocompatible biomaterial composites such as Bioglass (BG), Hydroxyapatite (Hap), and Tricalcium phosphate (TCP) can be integrated with PMMA, so as to augment the bioactivity, porosity as well as regeneration of hard tissues in human body. Among the bioactive glass, 60S BG (Bioactive glass with 60 percentage of Silica without Sodium ions) is better materials among aforementioned systems owning to mechanical stability as well as controlled bioactive material. In this work, the fabrication of PMMA-CaP (calcium phosphate)-based scaffolds were carried out by Thermal Induced Phase Separation method (TIPS). X-ray diffractogram analysis (XRD) is used to examine the physiochemical properties of the scaffolds that evidently reveal the presence of calcium phosphate besides calcium phosphate silicate phases. The Field Emission Scanning Electron Microscopy (FESEM) studies obviously exhibited the microstructure of the scaffolds as well as their interconnected porous morphology. The PMMA/60S BG/TCP (C50) scaffold has the maximum pore size, measuring 77 ± 23 µm, while the average pore size ranges from 50 ± 20 to 80 ± 23 µm. By performing a liquid displacement method, the C50 scaffold is found to have the largest porosity of 50%, high hydrophilicity of 118.16°, and a compression test reveals the scaffolds to have a maximum compressive strength of 0.16 MPa. The emergence of bone-like apatite on the scaffold surface after 1st and 21st days of SBF immersion is further supported by in vitro bioactivity studies. Cytocompatibility and hemocompatibility analyses undoubtedly confirmed the biocompatibility behavior of PMMA-based bioactive scaffolds. Nano-CT investigation demonstrates that PMMA-CaP scaffolds provide more or less alike morphologies of composites that resemble the natural bone. Therefore, this combination of scaffolds could be considered as potential biomaterials for bone regeneration application. This detailed study promisingly demonstrates the eminence of the unique scaffolds in the direction of regenerative medicines.

8.
Chemosphere ; 343: 140273, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37758069

ABSTRACT

The efficient disinfection of bacterial contaminants in wastewater is a critical challenge in the field of environmental remediation. Herein, we present a novel approach for efficient bacterial disinfection using hydrothermally integrated MoO2-MoS2@rGO nanoframe networks. The developed nanoframe networks exhibit a unique architecture comprising of molybdenum dioxide (MoO2) and molybdenum disulfide (MoS2) impregnated on algae biomass reduced graphene oxide (rGO). The as-synthesized nanoframe networks demonstrate exceptional antibacterial activity against Escherichia coli bacteria. The disinfection efficiency was evaluated by measuring the bacterial viability and observing the morphological changes using scanning electron microscopy. The MoO2-MoS2@rGO nanoframe networks exhibited a remarkable antibacterial effect, achieving a high disinfection rate of 95.8% within a short contact time of 10 min. The efficient bacterial disinfection capability of the nanoframe networks can be attributed to the synergistic effects of MoO2, MoS2, and rGO components. The MoO2 nanoparticles generate reactive oxygen species (ROS), persuading oxidative stress and leading to bacterial inactivation. The MoS2 nanoparticles possess inherent antibacterial properties through the release of Mo and S ions. The rGO nanosheets provide a conductive and stable platform, facilitating the charge transfer during the antibacterial process. Furthermore, the hydrothermal integration method enables easy scalability and cost-effectiveness of the MoO2-MoS2@rGO nanoframe networks. The nanoframe networks can be easily recovered and reused, reducing waste generation and promoting sustainability. Overall, this study presents a promising approach for efficient bacterial disinfection in wastewater using hydrothermally integrated MoO2-MoS2@rGO nanoframe networks. The remarkable antibacterial performance, along with the advantages of scalability and reusability, makes these nanoframe networks a potential candidate for practical applications in environmental remediation and water treatment processes.

9.
Microb Pathog ; 181: 106173, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37295482

ABSTRACT

Marine bio-nanotechnology is a new promising field having high perspective in the area of biological research. In 2018 the production of crustacean shells especially from shrimp is about 54,500 tons on South East coast of India. The current study focuses on the use of extracted chitosan (Squilla shells) polymer in silver nanoparticle synthesis along with immobilized chitosanase synergistically improves the antimicrobial and quorum quenching effects against the multi drug resistant (MDR) pathogens. The main objective of the study is to synthesize the chitosan AgNPs and to immobilize the enzyme chitosanase with it and to study the anti quorum sensing (quorum quenching) activity against MDR pathogens. This study will render a new ideology to eliminate biofilm formation and suppress the pathogenicity of planktonic MDR pathogens. Since the combinations of chitosanase, as well as chitosan AgNPs, are very efficient in eliminating them.


Subject(s)
Chitosan , Metal Nanoparticles , Quorum Sensing , Anti-Bacterial Agents/pharmacology , Chitosan/pharmacology , Biofilms , Silver/pharmacology
10.
Biomater Sci ; 11(11): 3921-3937, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37092809

ABSTRACT

The development of wound healing scaffolds with high porosity, rapid healing properties, and anti-inflammatory functionality is vital in the chronic wound healing stage for the production of extracellular matrices of injured tissues. The 45S5 bioactive glass (BG) possesses good biocompatibility and provides a potential bonding resource for fibroblast cell proliferation, growth factor synthesis, and granulated tissue formation. Chitosan, a natural polymer, promotes tissue regeneration and has anti-microbial properties. BG and chitosan scaffolds were prepared by the freeze-drying (lyophilization) method. The chitosan scaffold is a semi-crystalline polymer with a random crystal structure because it contains more hydroxyl groups. Chitosan alone shows a sheet-like morphology with a porous microstructure (1.7475 nm). BG particulates were well decorated over the surface of the chitosan scaffold with a homogeneous dispersion. Cell viability was observed for L929 cells on the chitosan-BG scaffolds. Confocal images vividly depict the interaction of the L929 cells with the scaffold without causing any damage to the cell membrane. In vitro scratch assay shows the best wound healing activity (complete wound closure) for the BG-chitosan nanocomposite scaffolds at 18 h. The chitosan-BG scaffolds were combined with anti-inflammatory drugs and induced inflammatory genes at an inhibition rate of COX of (36, 28, and 30%), LOX of (20, 13, and 14%), and NO of (48, 38, and 39%) for chitosan, chitosan-BG, and chitosan-BG (Na-free) at 100 µL addition. The in vitro bioactivities proved that the chitosan-BG scaffolds could enable better cell formation, and exhibited improved biocompatibility, and anti-inflammatory and wound healing properties.


Subject(s)
Chitosan , Nanocomposites , Chitosan/chemistry , Tissue Scaffolds/chemistry , Polymers , Nanocomposites/chemistry , Anti-Inflammatory Agents/pharmacology
11.
Nanotechnology ; 33(49)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36041406

ABSTRACT

Herein, we demonstrate a microwave-assisted chemical reduction technique to exfoliate a few layers of graphene from the natural waste material, 'coconut shell'. The microwave irradiation coconut shell is subjected to structural, morphological and functional groups characterization methods including SEM, Raman, FTIR and XPS spectroscopic analyses. The formation of biomass reduced graphene (BRG) has been confirmed through Raman and FTIR spectroscopic analyzes with the presence of D, G and 2D and other functional spectral bands, respectively. The surface topography of the BRG exhibits two-dimensional mat structures with wrinkle topography, imaged by electron microscopic techniques. The metallic behaviour of the BRG is evaluated by band structure calculation using density functional theory. The synthesized nanostructure has been evaluated for exhaled diabetic breath sensing application by fabricating sensor device on the paper-based substrate by roll-to-roll coating technique. The BRG sensor exhibited enhanced sensing response at a very lower concentration of diabetic biomarker with long term stability and rapid response/recovery time of 1.11 s/41.25 s, respectively. Based on our findings, the microwave-assisted BRG is a potential candidate for fabricating highly scalable, inherently safe, economically viable and excellent sensing performance to detect exhaled diabetic breath at room temperature.


Subject(s)
Diabetes Mellitus , Graphite , Nanostructures , Biomarkers , Biomass , Diabetes Mellitus/diagnosis , Graphite/chemistry , Humans
12.
Biomed Res Int ; 2022: 2530156, 2022.
Article in English | MEDLINE | ID: mdl-35941984

ABSTRACT

Prevalently, there is a primary strategy to cure caries using restorative materials notably bioceramics. Existing synthetic materials stimulate natural tooth structure with acceptable interfacial bonding and esthetic and biomechanical qualities with better durability. Several bioceramics have been introduced and investigated for their potentialities as restorative materials. Biomineralization of tooth initiates repair and regeneration of natural dental tissue and reinstating the integrity of periodontium. In the evolution of bioceramics in the aspects of different essential composition for dental application, recent technology and modern strategies revolutionize the restorative dentistry. Bioglass is one among the important bioceramics as a restorative material, and by regulating the properties of the material, it is possible to construct improved formulation towards restoration. This article reviews the current revolution of endodontics, existing restorative materials, and technologies to be achieve for engineering materials with the better design.


Subject(s)
Endodontics , Dental Restoration, Permanent , Dentistry
13.
Prog Biomater ; 11(1): 79-94, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35094302

ABSTRACT

A unique implant coated substrate with dual-drug-eluting system exhibiting antibacterial, anti-inflammatory, and bone regenerative capacity has been fabricated using spray pyrolysis deposition (SPD) method. Bioglass (BG) and BG-alumina (BG-Al) composites coatings with different concentrations of Al incorporated on BG network over the Cp-Ti substrate were fabricated using SPD technique. Phase purity of BG and BG-Al composites were analyzed by XRD in which Na2Ca2Si3O9 and ß-Na2Ca4(PO4)2SiO4) and Na7.15(Al7.2Si8.8O32) phases were formed. Surface morphology of the coated substrates was analyzed by SEM. Uniformity of the coatings were evaluated by surface profilometer and the uniform distribution the nanoparticles were confirmed with Elemental mapping. Systematically, each apatite layer formation on coated substrate was confirmed by immersing the samples for 1, 3, and 7 days in simulated body fluid and the needle-like structure was characterized using SEM. Cumulative release of Tetracycline hydrochloride (Tet) antibiotic and Dexamethasone (Dex) anti-inflammatory drug-loaded BG-Al and BG-Al composite-coated substrate were studied for 24 h. Antibacterial activity of the coated substrates were evaluated by time-dependent growth inhibition and minimal inhibitory concentration (MIC) assays in which BG-Al and BG-Al composite loaded with Tet showed considerable growth inhibition against S. aureus. Osteoblast-like cells (MG-63) exhibited profound proliferation with no cytotoxic effects which was due to release of Dex drug-coated substrates. Thus, surface modification of Cp-Ti substrate with BG, BG-Al composites coatings loaded with Tet and Dex drug can be considered for post-operative orthopedic implant infection application.

14.
Chemosphere ; 284: 131280, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34217926

ABSTRACT

3D-particulate and 1D-fiber structures of multiferroic bismuth ferrite (BiFeO3/BFO) and their composites with 2D-graphene oxide (GO) have been developed to exploit the different scheme of interfacial engineering as 3D/2D and 1D/2D systems. Particulates and fibers of BFO were developed via sol-gel and electrospinning fabrication approaches respectively and their integration with GO was performed via the ultrasonic-assisted chemical reduction process. The crystalline and phase formation of BiFeO3 and GO was confirmed from the XRD patterns obtained. The electron microscopic images revealed the characteristic integration of 3D particulates (with average size of 100 nm) and 1D fibers (with diameter of ~150 nm and few µm length) onto the 2D GO layers (thickness of ~27 nm). XPS analysis revealed that the BFO nanostructures have been integrated onto the GO through chemisorptions process, where it indicated that the ultrasonic process engineers the interface through the chemical modification of the surface of these 3D/2D and 1D/2D nanostructures. The photophysical studies such as the impedance and photocurrent measurements showed that the charge separation and recombination resistance is significantly enhanced in the system, which can directly be attributed to the effective interfacial engineering in the developed hetero-morphological composites. The degradation studies against a model pollutant Rhodamine B revealed that the developed nanocomposites exhibit superior photocatalytic activity via the effective generation of OH radicals as confirmed by the radical analysis studies (100% degradation in 150 and 90 min for 15% GO/BFO particulate and fiber composites, respectively). The developed system also demonstrated excellent photocatalytic recyclability, indicated their enhanced stability.


Subject(s)
Bismuth , Nanocomposites , Catalysis , Ferric Compounds , Graphite , Sunlight
15.
Mater Sci Eng C Mater Biol Appl ; 120: 111617, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33545812

ABSTRACT

Surface potential and chemical compositions of the bioceramics are the core of therapeutic effect and are key factors to trigger the interfacial interactions with surrounding hard and soft tissues to repair and regeneration. Ionic substitution in hydroxyapatite (Hap) lattice significantly influences the zeta potential from -16.46 ± 0.66 mV to -6.01 ± 0.68 mV as well as an average nano-rod length from ~40 nm to ~26 nm with respect to SO42- ion content. Moreover, the surface chemistry of Hap is mainly inter-related to SO42- substitution rate at PO42- site. Specifically, nano-sized feature with lowered negative surface potential influences the protein adsorption via their weak repulsive or attractive forces. Bovine serum albumin (BSA) and lysozyme (LSZ) adsorption studies confirmed the increased affinity to active binding sites of Hap's surface. Further, SO42- ion substituted Hap (SNHA) showed improved in vitro biomineralization activity and alkaline phosphatase activity. Expression of osteogenic biomarkers such as collagen I, V, osteopontin and osteocalcin were evaluated in Saos-2 and MC3T3-E1 cells. Gene expression of these markers was influenced by SO42- ion content in Hap (maximum with 10SNHA). Altogether, these data emphasizes that chemical composition and surface properties are dominant aspect in bioceramic development towards bone regeneration.


Subject(s)
Durapatite , Osteogenesis , Adsorption , Serum Albumin, Bovine , Sulfates
16.
Biomater Sci ; 8(14): 4003-4025, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32573600

ABSTRACT

With a worldwide increase in the aged populace and associated geriatric diseases, there is an enormous need for the regeneration of degenerated organ systems. For this purpose, bioactive glass particulate (nBG) integrated alginate (Alg) composite membrane scaffolds were fabricated by a sol-gel assisted freeze-drying method and validated for their multifunctional utility in regenerative medicine. The presence of the combeite highly crystalline structure of nBG and Alg amorphous broad peaks were confirmed. Repetitive peaks from acids along with stretching confirmed the chemical interactions of the composites. Swelling ability, porosity, and in vitro degradation and biomineralization were analysed for up to 7 days. The results indicated that reduced swelling and degradation enhanced apatite formation. Hemocompatibility and the hemostatic properties on scaffolds were also systematically investigated. Additionally, significant cyto-compatibility and proliferation were noted in a culture with KB3-1. Further 3-D co-cultures with HDF cells and KB3-1 cells exhibited spheroid formation on Alg, nBG/Alg and nBG-Zr/Alg with profound dynamism required to establish organoids of interest. Thus, the results indicate that these 3D hydrogel membranes could offer infinite possibilities in the field of regenerative medicine, notably as an extracellular matrix (ECM) supporting the regeneration of bone, intra-vascularization, and neo-tissue formation, such as cartilage and ligaments.


Subject(s)
Alginates , Tissue Scaffolds , Ceramics , Hydrogels , Tissue Engineering
17.
Mater Sci Eng C Mater Biol Appl ; 109: 110598, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32229004

ABSTRACT

This study highlights the incorporation of copper in the bioactive glasses (BAG) network that greatly influences the morphological, structural and biological properties. By increasing the copper incorporation in BAG, increment in cell volume was obtained from XRD patterns, and concomitantly, dominant phosphate bands and latent silica bands were observed by FT-IR and Raman spectroscopic results. The Cu addition also affected particle appearance to vary from spherical to cluster-like cubes in 1.5% and 2.5% copper-doped BAG. Due to the mesoporous network 1.5% and 2.5% copper-doped BAG showed enhanced release of anti-inflammatory drugs such as Acetaminophen (ACE) and Ibuprofen (IBU) in which, the drug release profiles showed best fit with kinetic models of First order, Korsmeyar-Peppas and Higuchi. Copper doping influences the lattice of BAG, as a result morphology and porosity varied, which regulates the ionic dissolution, hence, prompting bioactivity was perceived from 1.5% and 2.5% copper-doped bioactive glasses (Cu-BGs). Moreover, 2.5% Cu-BG and 1.5% Cu-BG showed highest rate of ROS detection, as well as improved antimicrobial activity. This study established that up to certain proportion of copper incorporation in BAG network, potentially enhances the biomineralization and turns the morphology towards minimal size with mesoporous nature. Due to the abundance in oral microbial exposure, copper amplifies the superior antimicrobial properties, and Cu-BGs act as a drug carrier to load ACE and IBU, which potentially up-regulate the healing properties in dental application.


Subject(s)
Acetaminophen , Anti-Infective Agents , Bacteria/growth & development , Biomineralization/drug effects , Candida albicans/growth & development , Copper , Drug Carriers , Glass/chemistry , Ibuprofen , Acetaminophen/chemistry , Acetaminophen/pharmacokinetics , Acetaminophen/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacokinetics , Anti-Infective Agents/pharmacology , Copper/chemistry , Copper/pharmacokinetics , Copper/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacology , Humans , Ibuprofen/chemistry , Ibuprofen/pharmacokinetics , Ibuprofen/pharmacology
18.
J Colloid Interface Sci ; 566: 463-472, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32032811

ABSTRACT

The demand for high-quality graphene for electronic applications is increasing due to its high carrier mobility and electrical conductivity. In this connection, printing technology is a reliable method towards the fabrication of conductive, disposable graphene-based electrode for low-cost sensor application. Herein, we aimed to report the synthesis of high-quality graphene nanosheets obtained by electrochemical exfoliation of biomass-derived from corn cob. The conductive ink was prepared from this exfoliated graphene and was utilized for the preparation of paper-based graphene electrode towards double stranded DNA (dsDNA) sensor application. This paper, based graphene electrode opens the possibility of direct electrochemical analysis of analyte without any sample preparation. In this study, two irreversible oxide peaks were obtained from paper-based printed graphene electrode, corresponds to oxidation of guanine (G) and adenine (A) of dsDNA in the linear range of 0.2 pg mL-1 to 5 pg mL-1 with the detection limit of 0.68 pg mL-1 and the sensitivity of 0.00656 mA pg-1 cm-2. Further, a small-scale printable circuit is fabricated using this graphene shows good conductivity of 1.145x103(S/m).


Subject(s)
Biosensing Techniques , DNA/analysis , Electrochemical Techniques , Graphite/chemistry , Paper , Point-of-Care Systems , Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Electrodes , Humans , Particle Size , Surface Properties
19.
J Biomed Mater Res B Appl Biomater ; 108(1): 143-155, 2020 01.
Article in English | MEDLINE | ID: mdl-30957425

ABSTRACT

This study is to investigate the effect of synthesis approaches on morphology, porosity, and biocompatibility of bioactive glass (BG). BG prepared through sol-gel approach was subsequently subjected to microwave and probe sonication techniques to investigate the structural and morphological effect. Hexagonal rod-shaped morphology was obtained in sol-gel-derived bioactive glass, whereas mesoporous particles and spherical-shaped morphology were observed in probe-sonicated and microwave-assisted sol-gel approaches, respectively. The probe-sonicated BG has mesopores with pore diameter of 14.7 nm, whereas surface porosity of 1.5 nm, and 3.5 nm for pure sol-gel and microwave-assisted sol-gel fabricated BGs. Granular size, shape, and porosity have a significant role at the point of contact with cellular membrane. Therefore, we studied the biocompatibility with respect to morphology and porosity of the fabricated BGs. From this study, we observed that the BG prepared using probe sonication method controls the particle size, further it enhances the porosity that altogether improves the biocompatibility. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:143-155, 2020.


Subject(s)
Ceramics , Materials Testing , Microwaves , Cell Line, Tumor , Ceramics/chemical synthesis , Ceramics/chemistry , Ceramics/pharmacology , Humans , Phase Transition
20.
Nanoscale ; 11(48): 23503, 2019 12 28.
Article in English | MEDLINE | ID: mdl-31793598

ABSTRACT

Correction for 'Compliments of confinements: substitution and dimension induced magnetic origin and band-bending mediated photocatalytic enhancements in Bi1-xDyxFeO3 particulate and fiber nanostructures' by M. Sakar et al., Nanoscale, 2015, 7, 10667-10679.

SELECTION OF CITATIONS
SEARCH DETAIL
...