Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
3.
Mol Psychiatry ; 26(12): 7550-7559, 2021 12.
Article in English | MEDLINE | ID: mdl-34262135

ABSTRACT

Recent evidence has documented the potential roles of histone-modifying enzymes in autism-spectrum disorder (ASD). Aberrant histone H3 lysine 9 (H3K9) dimethylation resulting from genetic variants in histone methyltransferases is known for neurodevelopmental and behavioral anomalies. However, a systematic examination of H3K9 methylation dynamics in ASD is lacking. Here we resequenced nine genes for histone methyltransferases and demethylases involved in H3K9 methylation in individuals with ASD and healthy controls using targeted next-generation sequencing. We identified a novel rare variant (A211S) in the SUV39H2, which was predicted to be deleterious. The variant showed strongly reduced histone methyltransferase activity in vitro. In silico analysis showed that the variant destabilizes the hydrophobic core and allosterically affects the enzyme activity. The Suv39h2-KO mice displayed hyperactivity and reduced behavioral flexibility in learning the tasks that required complex behavioral adaptation, which is relevant for ASD. The Suv39h2 deficit evoked an elevated expression of a subset of protocadherin ß (Pcdhb) cluster genes in the embryonic brain, which is attributable to the loss of H3K9 trimethylation (me3) at the gene promoters. Reduced H3K9me3 persisted in the cerebellum of Suv39h2-deficient mice to an adult stage. Congruently, reduced expression of SUV39H1 and SUV39H2 in the postmortem brain samples of ASD individuals was observed, underscoring the role of H3K9me3 deficiency in ASD etiology. The present study provides direct evidence for the role of SUV39H2 in ASD and suggests a molecular cascade of SUV39H2 dysfunction leading to H3K9me3 deficiency followed by an untimely, elevated expression of Pcdhb cluster genes during early neurodevelopment.


Subject(s)
Autistic Disorder , Histone-Lysine N-Methyltransferase/genetics , Animals , Brain/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Mice , Protocadherins
4.
Transl Psychiatry ; 11(1): 275, 2021 05 08.
Article in English | MEDLINE | ID: mdl-33966051

ABSTRACT

Carbonyl stress, a specific form of oxidative stress, is reported to be involved in the pathophysiology of schizophrenia; however, little is known regarding the underlying mechanism. Here, we found that disruption of GLO1, the gene encoding a major catabolic enzyme scavenging the carbonyl group, increases vulnerability to external carbonyl stress, leading to abnormal phenotypes in human induced pluripotent stem cells (hiPSCs). The viability of GLO1 knockout (KO)-hiPSCs decreased and activity of caspase-3 was increased upon addition of methylglyoxal (MGO), a reactive carbonyl compound. In the GLO1 KO-hiPSC-derived neurons, MGO administration impaired neurite extension and cell migration. Further, accumulation of methylglyoxal-derived hydroimidazolone (MG-H1; a derivative of MGO)-modified proteins was detected in isolated mitochondria. Mitochondrial dysfunction, including diminished membrane potential and dampened respiratory function, was observed in the GLO1 KO-hiPSCs and derived neurons after addition of MGO and hence might be the mechanism underlying the effects of carbonyl stress. The susceptibility to MGO was partially rescued by the administration of pyridoxamine, a carbonyl scavenger. Our observations can be used for designing an intervention strategy for diseases, particularly those induced by enhanced carbonyl stress or oxidative stress.


Subject(s)
Induced Pluripotent Stem Cells , Lactoylglutathione Lyase , Humans , Induced Pluripotent Stem Cells/metabolism , Lactoylglutathione Lyase/genetics , Mitochondria/metabolism , Neurons/metabolism , Oxidative Stress , Pyruvaldehyde
5.
EMBO Mol Med ; 13(4): e12574, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33656268

ABSTRACT

Genomic defects with large effect size can help elucidate unknown pathologic architecture of mental disorders. We previously reported on a patient with schizophrenia and a balanced translocation between chromosomes 4 and 13 and found that the breakpoint within chromosome 4 is located near the LDB2 gene. We show here that Ldb2 knockout (KO) mice displayed multiple deficits relevant to mental disorders. In particular, Ldb2 KO mice exhibited deficits in the fear-conditioning paradigm. Analysis of the amygdala suggested that dysregulation of synaptic activities controlled by the immediate early gene Arc is involved in the phenotypes. We show that LDB2 forms protein complexes with known transcription factors. Consistently, ChIP-seq analyses indicated that LDB2 binds to > 10,000 genomic sites in human neurospheres. We found that many of those sites, including the promoter region of ARC, are occupied by EGR transcription factors. Our previous study showed an association of the EGR family genes with schizophrenia. Collectively, the findings suggest that dysregulation in the gene expression controlled by the LDB2-EGR axis underlies a pathogenesis of subset of mental disorders.


Subject(s)
Schizophrenia , Animals , Fear , Gene Expression , Humans , LIM Domain Proteins/genetics , Mice , Mice, Knockout , Schizophrenia/genetics , Transcription Factors/genetics
6.
Schizophr Bull ; 47(4): 1190-1200, 2021 07 08.
Article in English | MEDLINE | ID: mdl-33595068

ABSTRACT

We previously identified quantitative trait loci (QTL) for prepulse inhibition (PPI), an endophenotype of schizophrenia, on mouse chromosome 10 and reported Fabp7 as a candidate gene from an analysis of F2 mice from inbred strains with high (C57BL/6N; B6) and low (C3H/HeN; C3H) PPI levels. Here, we reanalyzed the previously reported QTLs with increased marker density. The highest logarithm of odds score (26.66) peaked at a synonymous coding and splice-site variant, c.753G>A (rs257098870), in the Cdh23 gene on chromosome 10; the c.753G (C3H) allele showed a PPI-lowering effect. Bayesian multiple QTL mapping also supported the same variant with a posterior probability of 1. Thus, we engineered the c.753G (C3H) allele into the B6 genetic background, which led to dampened PPI. We also revealed an e-QTL (expression QTL) effect imparted by the c.753G>A variant for the Cdh23 expression in the brain. In a human study, a homologous variant (c.753G>A; rs769896655) in CDH23 showed a nominally significant enrichment in individuals with schizophrenia. We also identified multiple potentially deleterious CDH23 variants in individuals with schizophrenia. Collectively, the present study reveals a PPI-regulating Cdh23 variant and a possible contribution of CDH23 to schizophrenia susceptibility.


Subject(s)
Cadherin Related Proteins/genetics , Cadherins/genetics , Prepulse Inhibition/genetics , Schizophrenia/genetics , Alleles , Animals , Humans , Mice , Quantitative Trait Loci
7.
Genes Cells ; 26(3): 136-151, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33501714

ABSTRACT

The molecular mechanisms underlying neurodevelopmental disorders (NDDs) remain unclear. We previously identified Down syndrome cell adhesion molecule like 1 (Dscaml1) as a responsible gene for Ihara epileptic rat (IER), a rat model for human NDDs with epilepsy. However, the relationship between NDDs and DSCAML1 in humans is still elusive. In this study, we screened databases of autism spectrum disorders (ASD), intellectual disability (ID)/developmental disorders (DD) and schizophrenia for genomic mutations in human DSCAML1. We then performed in silico analyses to estimate the potential damage to the mutated DSCAML1 proteins and chose three representative mutations (DSCAML1C729R , DSCAML1R1685* and DSCAML1K2108Nfs*37 ), which lacked a cysteine residue in the seventh Ig domain, the intracellular region and the C-terminal PDZ-binding motif, respectively. In overexpression experiments in a cell line, DSCAML1C729R lost its mature N-glycosylation, whereas DSCAML1K2108Nfs*37 was abnormally degraded via proteasome-dependent protein degradation. Furthermore, in primary hippocampal neurons, the ability of the wild-type DSCAML1 to regulate the number of synapses was lost with all mutant proteins. These results provide insight into understanding the roles of the domains in the DSCAML1 protein and further suggest that these mutations cause functional changes, albeit through different mechanisms, that likely affect the pathophysiology of NDDs.


Subject(s)
Cell Adhesion Molecules/genetics , Mutation/genetics , Neurodevelopmental Disorders/genetics , Animals , Autism Spectrum Disorder/genetics , Cell Adhesion , Cell Membrane/metabolism , Dendritic Spines/metabolism , Female , Glycosylation , Hippocampus/pathology , Humans , L Cells , Male , Mice , Molecular Sequence Annotation , Mutant Proteins/metabolism , Proteolysis , Rats, Wistar , Schizophrenia/genetics , Synapses/metabolism
8.
Cereb Cortex ; 31(1): 448-462, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32924060

ABSTRACT

Structural changes in the corpus callosum have been reported in schizophrenia; however, the underlying molecular mechanism remains unclear. As the corpus callosum is high in lipid content, we analyzed the lipid contents of the corpora callosa from 15 patients with schizophrenia and 15 age- and sex-matched controls using liquid chromatography coupled to tandem mass spectrometry and identified lipid combinations associated with schizophrenia. Real-time quantitative polymerase chain reaction analyses using extended samples (schizophrenia, n = 95; control, n = 91) showed low expression levels of lipid metabolism-related genes and their potential upstream transcription factors in schizophrenia. Subsequent pathway analysis identified a gene regulatory network where nuclear factor of activated T cells 2 (NFATC2) is placed most upstream. We also observed low gene expression levels of microglial markers, inflammatory cytokines, and colony-stimulating factor 1 receptor (CSF1R), which is known to regulate the density of microglia, in the corpus callosum in schizophrenia. The interactions between CSF1R and several genes in the presently identified gene network originating from NFATC2 have been reported. Collectively, this study provides evidence regarding lipid abnormalities in the corpora callosa of patients with schizophrenia and proposes the potential role of impaired "NFATC2-relevant gene network-microglial axis" as its underlying mechanism.


Subject(s)
Biomarkers/analysis , Corpus Callosum/pathology , Lipids , Microglia/pathology , Schizophrenia/pathology , Adult , Chromatography, Liquid/methods , Corpus Callosum/metabolism , Cytokines/metabolism , Female , Gene Regulatory Networks/physiology , Humans , Male , Microglia/metabolism , Middle Aged , Schizophrenia/metabolism
9.
Acta Neuropathol Commun ; 8(1): 206, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33256836

ABSTRACT

The Ihara epileptic rat (IER) is a mutant model with limbic-like seizures whose pathology and causative gene remain elusive. In this report, via linkage analysis, we identified Down syndrome cell adhesion molecule-like 1(Dscaml1) as the responsible gene for IER. A single base mutation in Dscaml1 causes abnormal splicing, leading to lack of DSCAML1. IERs have enhanced seizure susceptibility and accelerated kindling establishment. Furthermore, GABAergic neurons are severely reduced in the entorhinal cortex (ECx) of these animals. Voltage-sensitive dye imaging that directly presents the excitation status of brain slices revealed abnormally persistent excitability in IER ECx. This suggests that reduced GABAergic neurons may cause weak sustained entorhinal cortex activations, leading to natural kindling via the perforant path that could cause dentate gyrus hypertrophy and epileptogenesis. Furthermore, we identified a single nucleotide substitution in a human epilepsy that would result in one amino acid change in DSCAML1 (A2105T mutation). The mutant DSCAML1A2105T protein is not presented on the cell surface, losing its homophilic cell adhesion ability. We generated knock-in mice (Dscaml1A2105T) carrying the corresponding mutation and observed reduced GABAergic neurons in the ECx as well as spike-and-wave electrocorticogram. We conclude that DSCAML1 is required for GABAergic neuron placement in the ECx and suppression of seizure susceptibility in rodents. Our findings suggest that mutations in DSCAML1 may affect seizure susceptibility in humans.


Subject(s)
Cell Adhesion Molecules/genetics , Entorhinal Cortex/pathology , GABAergic Neurons/pathology , Seizures/genetics , Animals , Electroencephalography , Genetic Predisposition to Disease , Kindling, Neurologic/genetics , Mice , Rats , Rats, Mutant Strains
10.
EBioMedicine ; 62: 103130, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33279456

ABSTRACT

BACKGROUND: The pathophysiology of schizophrenia, a major psychiatric disorder, remains elusive. In this study, the role of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor (RXR) families, belonging to the ligand-activated nuclear receptor superfamily, in schizophrenia, was analyzed. METHODS: The PPAR/RXR family genes were screened by exploiting molecular inversion probe (MIP)-based targeted next-generation sequencing (NGS) using the samples of 1,200 Japanese patients with schizophrenia. The results were compared with the whole-genome sequencing databases of the Japanese cohort (ToMMo) and the gnomAD. To reveal the relationship between PPAR/RXR dysfunction and schizophrenia, Ppara KO mice and fenofibrate (a clinically used PPARα agonist)-administered mice were assessed by performing behavioral, histological, and RNA-seq analyses. FINDINGS: Our findings indicate that c.209-2delA, His117Gln, Arg141Cys, and Arg226Trp of the PPARA gene are risk variants for schizophrenia. The c.209-2delA variant generated a premature termination codon. The three missense variants significantly decreased the activity of PPARα as a transcription factor in vitro. The Ppara KO mice exhibited schizophrenia-relevant phenotypes, including behavioral deficits and impaired synaptogenesis in the cerebral cortex. Oral administration of fenofibrate alleviated spine pathology induced by phencyclidine, an N-methyl-d-aspartate (NMDA) receptor antagonist. Furthermore, pre-treatment with fenofibrate suppressed the sensitivity of mice to another NMDA receptor antagonist, MK-801. RNA-seq analysis revealed that PPARα regulates the expression of synaptogenesis signaling pathway-related genes. INTERPRETATION: The findings of this study indicate that the mechanisms underlying schizophrenia pathogenesis involve PPARα-regulated transcriptional machinery and modulation of synapse physiology. Hence, PPARα can serve as a novel therapeutic target for schizophrenia.


Subject(s)
Biomarkers , PPAR alpha/metabolism , Schizophrenia/metabolism , Adult , Aged , Alternative Splicing , Amino Acid Sequence , Animals , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Cell Line , Disease Susceptibility , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Models, Biological , Models, Molecular , Mutation , PPAR alpha/antagonists & inhibitors , PPAR alpha/chemistry , PPAR alpha/genetics , Protein Conformation , Retinoid X Receptors/genetics , Retinoid X Receptors/metabolism , Schizophrenia/drug therapy , Schizophrenia/etiology , Structure-Activity Relationship
11.
Brain Commun ; 2(2): fcaa145, 2020.
Article in English | MEDLINE | ID: mdl-33225276

ABSTRACT

Autism spectrum disorder is a neurodevelopmental disorder characterized by difficulties in social communication and interaction, as well as repetitive and characteristic patterns of behaviour. Although the pathogenesis of autism spectrum disorder is unknown, being overweight or obesity during infancy and low weight at birth are known as risks, suggesting a metabolic aspect. In this study, we investigated adipose tissue development as a pathophysiological factor of autism spectrum disorder by examining the serum levels of adipokines and other metabolic markers in autism spectrum disorder children (n = 123) and typically developing children (n = 92) at 4-12 years of age. Among multiple measures exhibiting age-dependent trajectories, the leptin levels displayed different trajectory patterns between autism spectrum disorder and typically developing children, supporting an adipose tissue-dependent mechanism of autism spectrum disorder. Of particular interest, the levels of fatty acid binding protein 4 (FABP4) were significantly lower in autism spectrum disorder children than in typically developing subjects, at preschool age (4-6 years old: n = 21 for autism spectrum disorder and n = 26 for typically developing). The receiver operating characteristic curve analysis discriminated autism spectrum disorder children from typically developing children with a sensitivity of 94.4% and a specificity of 75.0%. We re-sequenced the exons of the FABP4 gene in a Japanese cohort comprising 659 autism spectrum disorder and 1000 control samples, and identified two rare functional variants in the autism spectrum disorder group. The Trp98Stop, one of the two variants, was transmitted to the proband from his mother with a history of depression. The disruption of the Fabp4 gene in mice evoked autism spectrum disorder-like behavioural phenotypes and increased spine density on apical dendrites of pyramidal neurons, which has been observed in the postmortem brains of autism spectrum disorder subjects. The Fabp4 knockout mice had an altered fatty acid composition in the cortex. Collectively, these results suggest that an 'adipo-brain axis' may underlie the pathophysiology of autism spectrum disorder, with FABP4 as a potential molecule for use as a biomarker.

12.
J Am Med Inform Assoc ; 27(12): 1913-1920, 2020 12 09.
Article in English | MEDLINE | ID: mdl-32761211

ABSTRACT

OBJECTIVE: India reported its first coronavirus disease 2019 (COVID-19) case in the state of Kerala and an outbreak initiated subsequently. The Department of Health Services, Government of Kerala, initially released daily updates through daily textual bulletins for public awareness to control the spread of the disease. However, these unstructured data limit upstream applications, such as visualization, and analysis, thus demanding refinement to generate open and reusable datasets. MATERIALS AND METHODS: Through a citizen science initiative, we leveraged publicly available and crowd-verified data on COVID-19 outbreak in Kerala from the government bulletins and media outlets to generate reusable datasets. This was further visualized as a dashboard through a front-end Web application and a JSON (JavaScript Object Notation) repository, which serves as an application programming interface for the front end. RESULTS: From the sourced data, we provided real-time analysis, and daily updates of COVID-19 cases in Kerala, through a user-friendly bilingual dashboard (https://covid19kerala.info/) for nonspecialists. To ensure longevity and reusability, the dataset was deposited in an open-access public repository for future analysis. Finally, we provide outbreak trends and demographic characteristics of the individuals affected with COVID-19 in Kerala during the first 138 days of the outbreak. DISCUSSION: We anticipate that our dataset can form the basis for future studies, supplemented with clinical and epidemiological data from the individuals affected with COVID-19 in Kerala. CONCLUSIONS: We reported a citizen science initiative on the COVID-19 outbreak in Kerala to collect and deposit data in a structured format, which was utilized for visualizing the outbreak trend and describing demographic characteristics of affected individuals.


Subject(s)
COVID-19/epidemiology , Citizen Science , Computer Graphics , Datasets as Topic , Pandemics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , India/epidemiology , Male , Middle Aged , User-Computer Interface , Young Adult
13.
Schizophr Bull ; 46(5): 1172-1181, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32346731

ABSTRACT

The disturbed integrity of myelin and white matter, along with dysregulation of the lipid metabolism, may be involved in schizophrenia pathophysiology. Considering the crucial role of sphingolipids in neurodevelopment, particularly in oligodendrocyte differentiation and myelination, we examined the role of sphingolipid dynamics in the pathophysiology of schizophrenia. We performed targeted mass spectrometry-based analysis of sphingolipids from the cortical area and corpus callosum of postmortem brain samples from patients with schizophrenia and controls. We observed lower sphingosine-1-phosphate (S1P) levels, specifically in the corpus callosum of patients with schizophrenia, but not in major depressive disorder or bipolar disorder, when compared with the controls. Patient data and animal studies showed that antipsychotic intake did not contribute to the lowered S1P levels. We also found that lowered S1P levels in the corpus callosum of patients with schizophrenia may stem from the upregulation of genes for S1P-degrading enzymes; higher expression of genes for S1P receptors suggested a potential compensatory mechanism for the lowered S1P levels. A higher ratio of the sum of sphingosine and ceramide to S1P, which can induce apoptosis and cell-cycle arrest, was also observed in the samples of patients with schizophrenia than in controls. These results suggest that an altered S1P metabolism may underlie the deficits in oligodendrocyte differentiation and myelin formation, leading to the structural and molecular abnormalities of white matter reported in schizophrenia. Our findings may pave the way toward a novel therapeutic strategy.

14.
Schizophr Res ; 217: 52-59, 2020 03.
Article in English | MEDLINE | ID: mdl-30765249

ABSTRACT

Dampened prepulse inhibition (PPI) is a consistent observation in psychiatric disorders, including schizophrenia and qualifies as a robust endophenotype for genetic evaluation. Using high PPI C57BL/6NCrlCrlj (B6Nj) and low PPI C3H/HeNCrlCrlj (C3HNj) inbred mouse strains, we have previously reported a quantitative trait locus (QTL) for PPI at chromosome 10 and identified Fabp7 as a candidate gene for regulating PPI and schizophrenia pathogenesis using Fabp7-deficient mice (B6.Cg-Fabp7 KO). Here, considering a possibility of carryover of residual genetic materials from embryonic stem (ES) cells used in generating knockout (KO) mice, we set out to re-address the genotype-phenotype correlation in a uniform genetic background. By generating a new Fabp7 KO mouse model in C57BL/6NCrl (B6N) background using the CRISPR-Cas9 nickase system, we evaluated the impact of Fabp7 ablation on schizophrenia-related behavioral phenotypes. To our surprise, we found no significant differences in PPI or any of the schizophrenia-related behavioral scores, as observed in our previous B6.Cg-Fabp7 KO mice. We identified several C3H/He mouse strain-specific alleles within the interval of chromosome 10-QTL, which are shared with 129/Sv mouse strains. These alleles, derived from 129/Sv ES cells, were retained in the B6.Cg-Fabp7 KO, despite multiple backcrossing and are thought to be responsible for the dampened PPI. In summary, our study demonstrates a precise genotype-phenotype relation for Fabp7 loss-of-function in a uniform B6N background, and raises the necessity of further analysis of the effects of genomic variants flanking the Fabp7 interval on phenotypes.


Subject(s)
Schizophrenia , Animals , Fatty Acid-Binding Protein 7 , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Schizophrenia/genetics
15.
Life Sci Alliance ; 2(5)2019 10.
Article in English | MEDLINE | ID: mdl-31591136

ABSTRACT

Enhanced carbonyl stress underlies a subset of schizophrenia, but its causal effects remain elusive. Here, we elucidated the molecular mechanism underlying the effects of carbonyl stress in iPS cells in which the gene encoding zinc metalloenzyme glyoxalase I (GLO1), a crucial enzyme for the clearance of carbonyl stress, was disrupted. The iPS cells exhibited significant cellular and developmental deficits, and hyper-carbonylation of collapsing response mediator protein 2 (CRMP2). Structural and biochemical analyses revealed an array of multiple carbonylation sites in the functional motifs of CRMP2, particularly D-hook (for dimerization) and T-site (for tetramerization), which are critical for the activity of the CRMP2 tetramer. Interestingly, carbonylated CRMP2 was stacked in the multimer conformation by irreversible cross-linking, resulting in loss of its unique function to bundle microtubules. Thus, the present study revealed that the enhanced carbonyl stress stemmed from the genetic aberrations results in neurodevelopmental deficits through the formation of irreversible dysfunctional multimer of carbonylated CRMP2.


Subject(s)
Frameshift Mutation , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/metabolism , Lactoylglutathione Lyase/genetics , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Schizophrenia/genetics , Cell Differentiation , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mass Spectrometry , Models, Molecular , Protein Carbonylation , Protein Conformation , Protein Multimerization , Schizophrenia/metabolism
16.
EMBO Mol Med ; 11(12): e10695, 2019 12.
Article in English | MEDLINE | ID: mdl-31657521

ABSTRACT

Mice with the C3H background show greater behavioral propensity for schizophrenia, including lower prepulse inhibition (PPI), than C57BL/6 (B6) mice. To characterize as-yet-unknown pathophysiologies of schizophrenia, we undertook proteomics analysis of the brain in these strains, and detected elevated levels of Mpst, a hydrogen sulfide (H2 S)/polysulfide-producing enzyme, and greater sulfide deposition in C3H than B6 mice. Mpst-deficient mice exhibited improved PPI with reduced storage sulfide levels, while Mpst-transgenic (Tg) mice showed deteriorated PPI, suggesting that "sulfide stress" may be linked to PPI impairment. Analysis of human samples demonstrated that the H2 S/polysulfides production system is upregulated in schizophrenia. Mechanistically, the Mpst-Tg brain revealed dampened energy metabolism, while maternal immune activation model mice showed upregulation of genes for H2 S/polysulfides production along with typical antioxidative genes, partly via epigenetic modifications. These results suggest that inflammatory/oxidative insults in early brain development result in upregulated H2 S/polysulfides production as an antioxidative response, which in turn cause deficits in bioenergetic processes. Collectively, this study presents a novel aspect of the neurodevelopmental theory for schizophrenia, unraveling a role of excess H2 S/polysulfides production.


Subject(s)
Hydrogen Sulfide/metabolism , Schizophrenia/metabolism , Schizophrenia/physiopathology , Sulfides/metabolism , Animals , Electrophoresis, Gel, Two-Dimensional , Energy Metabolism/genetics , Energy Metabolism/physiology , Epigenomics , Male , Mice , Proteomics , Schizophrenia/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
17.
EBioMedicine ; 45: 432-446, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31255657

ABSTRACT

BACKGROUND: Betaine is known to act against various biological stresses and its levels were reported to be decreased in schizophrenia patients. We aimed to test the role of betaine in schizophrenia pathophysiology, and to evaluate its potential as a novel psychotherapeutic. METHODS: Using Chdh (a gene for betaine synthesis)-deficient mice and betaine-supplemented inbred mice, we assessed the role of betaine in psychiatric pathophysiology, and its potential as a novel psychotherapeutic, by leveraging metabolomics, behavioral-, transcriptomics and DNA methylation analyses. FINDINGS: The Chdh-deficient mice revealed remnants of psychiatric behaviors along with schizophrenia-related molecular perturbations in the brain. Betaine supplementation elicited genetic background-dependent improvement in cognitive performance, and suppressed methamphetamine (MAP)-induced behavioral sensitization. Furthermore, betaine rectified the altered antioxidative and proinflammatory responses induced by MAP and in vitro phencyclidine (PCP) treatments. Betaine also showed a prophylactic effect on behavioral abnormality induced by PCP. Notably, betaine levels were decreased in the postmortem brains from schizophrenia, and a coexisting elevated carbonyl stress, a form of oxidative stress, demarcated a subset of schizophrenia with "betaine deficit-oxidative stress pathology". We revealed the decrease of betaine levels in glyoxylase 1 (GLO1)-deficient hiPSCs, which shows elevated carbonyl stress, and the efficacy of betaine in alleviating it, thus supporting a causal link between betaine and oxidative stress conditions. Furthermore, a CHDH variant, rs35518479, was identified as a cis-expression quantitative trait locus (QTL) for CHDH expression in postmortem brains from schizophrenia, allowing genotype-based stratification of schizophrenia patients for betaine efficacy. INTERPRETATION: The present study revealed the role of betaine in psychiatric pathophysiology and underscores the potential benefit of betaine in a subset of schizophrenia. FUND: This study was supported by the Strategic Research Program for Brain Sciences from AMED (Japan Agency for Medical Research and Development) under Grant Numbers JP18dm0107083 and JP19dm0107083 (TY), JP18dm0107129 (MM), JP18dm0107086 (YK), JP18dm0107107 (HY), JP18dm0107104 (AK) and JP19dm0107119 (KH), by the Grant-in-Aid for Scientific Research on Innovative Areas from the MEXT under Grant Numbers JP18H05435 (TY), JP18H05433 (AH.-T), JP18H05428 (AH.-T and TY), and JP16H06277 (HY), and by JSPS KAKENHI under Grant Number JP17H01574 (TY). In addition, this study was supported by the Collaborative Research Project of Brain Research Institute, Niigata University under Grant Numbers 2018-2809 (YK) and RIKEN Epigenetics Presidential Fund (100214-201801063606-340120) (TY).


Subject(s)
Betaine/pharmacology , Choline Dehydrogenase/genetics , Psychotropic Drugs/pharmacology , Schizophrenia/drug therapy , Animals , Brain/drug effects , Brain/pathology , DNA Methylation/drug effects , Dietary Supplements , Disease Models, Animal , Genotype , Humans , Japan , Liver/drug effects , Liver/pathology , Male , Methamphetamine/pharmacology , Mice , Oxidative Stress/drug effects , Quantitative Trait Loci , Schizophrenia/genetics , Schizophrenia/physiopathology
18.
Neurobiol Dis ; 131: 104162, 2019 11.
Article in English | MEDLINE | ID: mdl-29729395

ABSTRACT

Schizophrenia is one of the leading causes of disability among mental disorders, contributing to a substantial socioeconomic burden. Our understanding of the mechanisms of the pathogenesis of the disease has largely been limited by its inherent complexity imparted by the polygenicity and interactions with environmental factors. Since pathobiological events are initiated in the schizophrenic brain long before the onset of the psychotic manifestations, characterizing these processes is limited, mainly due to a lack of access to neuronal tissues. Induced pluripotent stem cell (iPSC) technologies have provided an unprecedented opportunity to establish pluripotent stem cells from patients with schizophrenia and differentiate them into neuronal lineage, enabling an in vitro recapitulation of the pathogenesis of the disease. Despite the inherent challenges, patient-derived iPSC studies of schizophrenia have been instrumental in unraveling the cellular and molecular phenotypes that might be involved in the biological causality. Here we review the literature and focus on studies that have utilized patient-derived iPSCs to model the pathogenesis of schizophrenia. We also discuss the challenges in modeling cellular phenotypes of schizophrenia.


Subject(s)
Induced Pluripotent Stem Cells , Neurons/pathology , Schizophrenia/pathology , Cell Differentiation/physiology , Humans , Models, Biological , Phenotype
19.
Biosci Biotechnol Biochem ; 83(1): 114-122, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30200826

ABSTRACT

The present study describes the hair growth-promoting effects of sodium thiosulfate (STS), a widely used compound, in mice. STS accelerated hair growth in the "telogen model", suggesting that it stimulates telogen hair follicles to reenter the anagen phase of hair growth. In the same model, STS potentiated hair growth in an additive manner with minoxidil (MXD), a drug used for the treatment of androgenic alopecia. Furthermore, in the "anagen model", STS promoted hair growth, probably by promoting hair follicle proliferation. Since STS elevated the skin surface temperature, its hair growth-promoting activity may be partly due to vasorelaxation, similar to MXD. In addition, STS is known to generate a gaseous mediator, H2S, which has vasorelaxation and anti-inflammatory/anti-oxidative stress activities. Therefore, STS and/or provisionally its metabolite, H2S, may aid the hair growth process. Collectively, these results suggest that salts of thiosulfate may represent a novel and beneficial remedy for hair loss.


Subject(s)
Hair Follicle/drug effects , Hair Follicle/growth & development , Models, Animal , Thiosulfates/pharmacology , Alopecia/drug therapy , Animals , Drug Synergism , Gene Expression Regulation/drug effects , Humans , Male , Mice, Inbred C3H , Minoxidil/administration & dosage , Minoxidil/adverse effects , Minoxidil/pharmacology , Models, Biological , Skin Temperature/drug effects , Sulfurtransferases/genetics , Sulfurtransferases/metabolism , Thiosulfates/administration & dosage , Thiosulfates/adverse effects
20.
Sci Rep ; 8(1): 1179, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29352221

ABSTRACT

METTL20 is a seven-ß-strand methyltransferase that is localised to the mitochondria and tri-methylates the electron transfer flavoprotein (ETF) ß subunit (ETFB) at lysines 200 and 203. It has been shown that METTL20 decreases the ability of ETF to extract electrons from medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) and glutaryl-CoA dehydrogenase in vitro. METTL20-mediated methylation of ETFB influences the oxygen consumption rate in permeabilised mitochondria, suggesting that METTL20-mediated ETFB methylation may also play a regulatory role in mitochondrial metabolism. In this study, we generated Mettl20 knockout (KO) mice to uncover the in vivo functions of METTL20. The KO mice were viable, and a loss of ETFB methylation was confirmed. In vitro enzymatic assays revealed that mitochondrial ETF activity was higher in the KO mice than in wild-type mice, suggesting that the KO mice had higher ß-oxidation capacity. Calorimetric analysis showed that the KO mice fed a ketogenic diet had higher oxygen consumption and heat production. A subsequent cold tolerance test conducted after 24 h of fasting indicated that the KO mice had a better ability to maintain their body temperature in cold environments. Thus, METTL20 regulates ETF activity and heat production through lysine methylation when ß-oxidation is highly activated.


Subject(s)
Fasting/metabolism , Ketone Bodies/metabolism , Methyltransferases/metabolism , Oxidation-Reduction , Thermogenesis , Animals , CRISPR-Cas Systems , Catalysis , Electron-Transferring Flavoproteins/metabolism , Fatty Acids/metabolism , Gene Editing , Humans , Loss of Function Mutation , Lysine/metabolism , Metabolomics/methods , Methylation , Methyltransferases/genetics , Mice , Mice, Knockout , Mitochondria/metabolism , Oxygen Consumption , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...