Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
An Acad Bras Cienc ; 96(1): e20220875, 2024.
Article in English | MEDLINE | ID: mdl-38511740

ABSTRACT

Compounds with a pyrazoline scaffold are useful as sensors for fluorescence detection of different types of analytes. Recovery of a pyrazoline-based sensor with a view to use it recurrently would be more facile when the sensing molecule is attached to a solid support. A reaction sequence has been designed to synthesize two benzaldehyde-pyrazoline hybrids as examples of a hitherto unknown type of compounds to be employed for the potential derivatization of polymers containing primary amino groups through azomethine formation. All intermediates, including the fairly unstable N1 -unsubstituted pyrazolines, along with the target compounds have been structurally characterized, with an emphasis on their particular NMR features. Examination of the photophysical properties of these benzaldehyde-pyrazoline hybrids showed that, despite the shortening of the extended N1-N2-C3 conjugated system common to 1,3,5-triarylpyrazolines through the replacement of the aryl at N1 by an aryloxyacetyl moiety, the novel compounds exhibit emission maxima at approximately 350 nm. Moreover, the introduction of a moderately electron-withdrawing substituent such as chlorine in the phenyl at C3 of pyrazoline leads to an amplification of fluorescence intensity.


Subject(s)
Benzaldehydes , Polymers , Pyrazoles/chemistry , Magnetic Resonance Spectroscopy , Coloring Agents
2.
Carbohydr Polym ; 334: 122032, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553231

ABSTRACT

The involvement of cyclodextrins in transesterification reactions with active esters has been described to mimic enzyme-catalyzed reactions, making cyclodextrin molecules suitable as enzyme models. Cyclodextrin-catalyzed ring-opening of cyclic esters in bulk reaction conditions was considered to proceed similarly. However, the mechanism of activating cyclic esters through inclusion in the cyclodextrin cavity remains incompletely understood to date. The present research is focused on observing the transesterification of ε-caprolactone in the presence of ß-cyclodextrin and additional amine organocatalysts within dimethyl sulfoxide solutions. The conducted experiments provide insights into the structural changes caused by various catalytic conditions in terms of the substitution pattern of the cyclodextrins. Our results are supported by a deep structural characterization through NMR and MALDI MS, which revealed the prospect of promoting rim-selective substitution of ß-cyclodextrin at either secondary or primary hydroxyl groups using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) organocatalysts. This offers the possibility to prepare cyclodextrin derivatives with specific substitution patterns. Based on the acquired structural information, the particular pathway in which ß-cyclodextrin influences the ring-opening of ε-caprolactone is delineated as follows: monomer complexation, substitution at the larger rim, chain elongation, and intramolecular transfer toward the smaller rim.

3.
Molecules ; 28(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37110637

ABSTRACT

Herein, we report the synthesis of inclusion complexes (ICs) based on 3,4-ethylenedioxythiophene (EDOT) with permethylated ß-cyclodextrins (TMe-ßCD) and permethylated γ-cyclodextrins (TMe-γCD) host molecules. To prove the synthesis of such ICs, molecular docking simulation, UV-vis titrations in water, 1H-NMR, and H-H ROESY, as well as matrix-assisted laser desorption ionization mass spectroscopy (MALDI TOF MS) and thermogravimetric analysis (TGA) were carried out on each of the EDOT∙TMe-ßCD and EDOT∙TMe-γCD samples. The results of computational investigations reveal the occurrence of hydrophobic interactions, which contribute to the insertion of the EDOT guest inside the macrocyclic cavities and a better binding of the neutral EDOT to TMe-ßCD. The H-H ROESY spectra show correlation peaks between H-3 and H-5 of hosts and the protons of the guest EDOT, suggesting that the EDOT molecule is included inside the cavities. The MALDI TOF MS analysis of the EDOT∙TMe-ßCD solutions clearly reveals the presence of MS peaks corresponding to sodium adducts of the species associated with the complex formation. The IC preparation shows remarkable improvements in the physical properties of EDOT, rendering it a plausible alternative to increasing its aqueous solubility and thermal stability.

4.
Molecules ; 27(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36431906

ABSTRACT

Cancer, in all its types and manifestations, remains one of the most frequent causes of death worldwide; an important number of anticancer drugs have been developed from plants, fungi and animals, starting with natural compounds that were later derivatized in order to achieve an optimized pharmacokinetic/pharmacological profile. Betulinic acid is a pentacyclic triterpenic compound that was identified as an anticancer agent whose main advantage consists in its selective activity, which ensures the almost total lack of cytotoxic side effects. Conjugates of betulinic acid with substituted triazoles, scaffolds with significant pharmacological properties, were synthesized and tested as anticancer agents in order to achieve new therapeutic alternatives. The current paper aims to obtain a C30-1,2,4-triazole derivative of betulinic acid simultaneously acetylated at C3 whose biological activity was tested against RPMI melanoma cells. The compound revealed significant cytotoxic effects at the tested concentrations (2, 10 and 50 µΜ) by significantly decreasing the cell viability to 88.3%, 54.7% and 24.5%, respectively, as compared to the control. The compound's testing in normal HaCaT cells showed a lack of toxicity, which indicates its selective dose-dependent anticancer activity. The investigation of its underlying molecular mechanism revealed an apoptotic effect induced at the mitochondrial level, which was validated through high-resolution respirometry studies.


Subject(s)
Antineoplastic Agents , Triterpenes , Animals , Triterpenes/pharmacology , Triterpenes/therapeutic use , Triazoles/pharmacology , Antineoplastic Agents/pharmacology , Betulinic Acid
5.
Gels ; 8(10)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36286167

ABSTRACT

Natural deep eutectic solvents (NADES)-hydroxypropyl cellulose (HPC) self-assembled gels with potential for pharmaceutical applications are prepared. FT-IR, 1HNMR, DSC, TGA and rheology measurements revealed that hydrogen bond acceptor−hydrogen bond donor interactions, concentration of NADES and the water content influence significantly the physico-chemical characteristics of the studied gel systems. HPC-NADES gel compositions have thermal stabilities lower than HPC and higher than NADES components. Thermal transitions reveal multiple glass transitions characteristic of phase separated systems. Flow curves evidence shear thinning (pseudoplastic) behavior. The flow curve shear stress vs. shear rate were assessed by applying Bingham, Herschel−Bulkley, Vocadlo and Casson rheological models. The proposed correlations are in good agreement with experimental data. The studied gels evidence thermothickening behavior due to characteristic LCST (lower critical solution temperature) behavior of HPC in aqueous systems and a good biocompatibility with normal cells (human gingival fibroblasts). The order of antibacterial and antifungal activities (S.aureus, E.coli, P. aeruginosa and C. albicans) is as follows: citric acid >lactic acid > urea > glycerol, revealing the higher antibacterial and antifungal activities of acids.

6.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077389

ABSTRACT

Pentacyclic triterpenes, such as betulinic, ursolic, and oleanolic acids are efficient and selective anticancer agents whose underlying mechanisms of action have been widely investigated. The introduction of N-bearing heterocycles (e.g., triazoles) into the structures of natural compounds (particularly pentacyclic triterpenes) has yielded semisynthetic derivatives with increased antiproliferative potential as opposed to unmodified starting compounds. In this work, we report the synthesis and biological assessment of benzotriazole esters of betulinic acid (BA), oleanolic acid (OA), and ursolic acid (UA) (compounds 1-3). The esters were obtained in moderate yields (28-42%). All three compounds showed dose-dependent reductions in cell viability against A375 melanoma cells and no cytotoxic effects against healthy human keratinocytes. The morphology analysis of treated cells showed characteristic apoptotic changes consisting of nuclear shrinkage, condensation, fragmentation, and cellular membrane disruption. rtPCR analysis reinforced the proapoptotic evidence, showing a reduction in anti-apoptotic Bcl-2 expression and upregulation of the pro-apoptotic Bax. High-resolution respirometry studies showed that all three compounds were able to significantly inhibit mitochondrial function. Molecular docking showed that compounds 1-3 showed an increase in binding affinity against Bcl-2 as opposed to BA, OA, and UA and similar binding patterns compared to known Bcl-2 inhibitors.


Subject(s)
Oleanolic Acid , Triterpenes , Apoptosis , Cell Line, Tumor , Esters/pharmacology , Humans , Molecular Docking Simulation , Oleanolic Acid/chemistry , Oleanolic Acid/pharmacology , Pentacyclic Triterpenes/pharmacology , Proto-Oncogene Proteins c-bcl-2 , Triazoles/pharmacology , Triterpenes/chemistry , Triterpenes/pharmacology
7.
Gels ; 8(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36005120

ABSTRACT

Recently, the development of new materials with the desired characteristics for functional tissue engineering, ensuring tissue architecture and supporting cellular growth, has gained significant attention. Hydrogels, which possess similar properties to natural cellular matrixes, being able to repair or replace biological tissues and support the healing process through cellular proliferation and viability, are a challenge when designing tissue scaffolds. This paper provides new insights into hydrogel-based polymeric blends (hydroxypropyl cellulose/Pluronic F68), aiming to evaluate the contributions of both components in the development of new tissue scaffolds. In order to study the interactions within the hydrogel blends, FTIR and 1HNMR spectroscopies were used. The porosity and the behavior in moisture medium were highlighted by SEM and DVS analyses. The biodegradability of the hydrogel blends was studied in a simulated biological medium. The hydrogel composition was determinant for the scaffold behavior: the HPC component was found to have a great influence on the BET and GAB areas, on the monolayer values estimated from sorption-desorption isotherms and on mucoadhesivity on small intestine mucosa, while the Pluronic F68 component improved the thermal stability. All blends were also found to have good mechanical strength and increased biocompatibility on the NHDF cell line. Based on their particular compositions and increased mucoadhesivity on small intestine mucosa, these polymeric blends could be effective in the repair or recovery of damaged cell membranes (due to the contribution of Pluronic F68) or in control drug-delivery intestinal formulations.

8.
Polymers (Basel) ; 14(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35406308

ABSTRACT

Cyclodextrins have previously been proven to be active in the catalysis of cyclic ester ring-opening reactions, hypothetically in a similar way to lipase-catalyzed reactions. However, the way they act remains unclear. Here, we focus on ß-cyclodextrin's involvement in the synthesis and characterization of ß-cyclodextrin-oligocaprolactone (CDCL) products obtained via the organo-catalyzed ring-opening of ε-caprolactone. Previously, bulk or supercritical carbon dioxide polymerizations has led to inhomogeneous products. Our approach consists of solution polymerization (dimethyl sulfoxide and dimethylformamide) to obtain homogeneous CDCL derivatives with four monomer units on average. Oligomerization kinetics, performed by a matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) optimized method in tandem with 1H NMR, revealed that monomer conversion occurs in two stages: first, the monomer is rapidly attached to the secondary OH groups of ß-cyclodextrin and, secondly, the monomer conversion is slower with attachment to the primary OH groups. MALDI MS was further employed for the measurement of the ring-opening kinetics to establish the influence of the solvents as well as the effect of organocatalysts (4-dimethylaminopyridine and (-)-sparteine). Additionally, the mass spectrometry structural evaluation was further enhanced by fragmentation studies which confirmed the attachment of oligoesters to the cyclodextrin and the cleavage of dimethylformamide amide bonds during the ring-opening process.

9.
Diagnostics (Basel) ; 12(3)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35328113

ABSTRACT

Nuclear magnetic resonance (NMR) metabolomics is currently popular enough to attract both specialized and non-specialized NMR groups involving both analytical trained personnel and newcomers, including undergraduate students. Recent interlaboratory studies performed by established NMR metabolomics groups demonstrated high reproducibility of the state-of-the-art NMR equipment and SOPs. There is, however, no assessment of NMR reproducibility when mixing both analytical experts and newcomers. An interlaboratory assessment of NMR quantitation reproducibility was performed using two NMR instruments belonging to different laboratories and involving several operators with different backgrounds and metabolomics expertise for the purpose of assessing the limiting factors for data reproducibility in a multipurpose NMR environment. The variability induced by the operator, automatic pipettes, NMR tubes and NMR instruments was evaluated in order to assess the limiting factors for quantitation reproducibility. The results estimated the expected reproducibility data in a real-life multipurpose NMR laboratory to a maximum 4% variability, demonstrating that the current NMR equipment and SOPs may compensate some of the operator-induced variability.

10.
Front Chem ; 6: 373, 2018.
Article in English | MEDLINE | ID: mdl-30234098

ABSTRACT

Colon cancer is a widespread pathology with complex biochemical etiology based on a significant number of intracellular signaling pathways that play important roles in carcinogenesis, tumor proliferation and metastasis. These pathways function due to the action of key enzymes that can be used as targets for new anticancer drug development. Herein we report the synthesis and biological antiproliferative evaluation of a series of novel S-substituted 1H-3-R-5-mercapto-1,2,4-triazoles, on a colorectal cancer cell line, HT-29. Synthesized compounds were designed by docking based virtual screening (DBVS) of a previous constructed compound library against protein targets, known for their important role in colorectal cancer signaling: MEK1, ERK2, PDK1, VEGFR2. Among all synthesized structures, TZ55.7, which was retained as a possible PDK1 (phospholipid-dependent kinase 1) inhibitor, exhibited the most significant cytotoxic activity against HT-29 tumor cell line. The same compound alongside other two, TZ53.7 and TZ3a.7, led to a significant cell cycle arrest in both sub G0/G1 and G0/G1 phase. This study provides future perspectives for the development of new agents containing the 1,2,4-mercapto triazole scaffold with antiproliferative activities in colorectal cancer.

11.
Beilstein J Org Chem ; 13: 779-792, 2017.
Article in English | MEDLINE | ID: mdl-28546834

ABSTRACT

Biodegradable oligolactide derivatives based on α-, ß- and γ-cyclodextrins (CDs) were synthesized by a green procedure in which CDs play the role of both the initiator and the catalyst. The synthetic procedure in which CDs and L-lactide (L-LA) are reacting in bulk at relatively high temperature of 110 °C was investigated considering the structural composition of the products. The obtained products were thoroughly characterized via mass spectrometry methods with soft ionization like matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI). Liquid chromatography (LC) separation with evaporative light scattering detection (ELSD) and NMR analysis were employed in order to elucidate the structural profiles of the obtained mixtures. The results clearly demonstrate that the cyclodextrins were tethered with more than one short oligolactate chain per CD molecule, predominantly at the methylene group, through ring opening of L-LA initiated by primary OH groups.

12.
Int J Oncol ; 50(4): 1175-1183, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28350123

ABSTRACT

The extensive biochemical research of multiple types of cancer has revealed important enzymatic signaling pathways responsible for tumor occurrence and progression, thus compelling the need for the discovery of new means with which to block these signaling cascades. The phosphoinositide 3-kinase/ protein kinase B (PI3K/AKT) pathway, which plays an important role in maintaining relevant cellular functions, exhibits various alterations in common human cancers, thus representing a suitable target in cancer treatment. Molecules bearing the 1,2,4-triazole moiety are known to possess multiple biological activities, including anticancer activity. The current study used molecular docking in the design of 5-mercapto-1,2,4-triazole derivatives with antiproliferative activity targeting the PI3K/AKT pathway. Three structures emerged as the result of this method, which indicated for these a highly favorable accommodation within the active binding site of PI3K protein, thus acting as potential PI3K inhibitors, and hence interfering with the above-mentioned pathway. The molecules were synthesized and their chemical structure was confirmed. The antiproliferative activity of these compounds was tested on 4 cancer cell lines (A375, B164A5, MDA-MB-231 and A549) and on normal human keratinocytes (HaCaT) by in vitro alamarBlue assay. The 3 compounds revealed antitumor activity against the breast cancer cell line (MDA-MB-231) and reduced toxicity on the normal cell line. The antibacterial activity of the compounds was also tested in vitro on Gram-positive and Gram-negative bacterial strains, revealing moderate activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...