Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
AoB Plants ; 15(2): plac043, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36751368

ABSTRACT

Oak regeneration is jeopardized by purple moor grass, a well-known competitive perennial grass in the temperate forests of Western Europe. Below-ground interactions regarding resource acquisition and interference have been demonstrated and have led to new questions about the negative impact of purple moor grass on ectomycorrhizal colonization. The objective was to examine the effects of moor grass on root system size and ectomycorrhization rate of oak seedlings as well as consequences on nitrogen (N) content in oak and soil. Oak seedlings and moor grass tufts were planted together or separately in pots under semi-controlled conditions (irrigated and natural light) and harvested 1 year after planting. Biomass, N content in shoot and root in oak and moor grass as well as number of lateral roots and ectomycorrhizal rate in oak were measured. Biomass in both oak shoot and root was reduced when planting with moor grass. Concurrently, oak lateral roots number and ectomycorrhization rate decreased, along with a reduction in N content in mixed-grown oak. An interference mechanism of moor grass is affecting oak seedlings performance through reduction in oak lateral roots number and its ectomycorrhization, observed in conjunction with a lower growth and N content in oak. By altering both oak roots and mycorrhizas, moor grass appears to be a species with a high allelopathic potential. More broadly, these results show the complexity of interspecific interactions that involve various ecological processes involving the soil microbial community and need to be explored in situ.

2.
G3 (Bethesda) ; 9(1): 21-32, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30333192

ABSTRACT

The link between phenotypic plasticity and heterosis is a broad fundamental question, with stakes in breeding. We report a case-study evaluating temporal series of wood ring traits of hybrid larch (Larix decidua × L. kaempferi and reciprocal) in relation to soil water availability. Growth rings record the tree plastic responses to past environmental conditions, and we used random regressions to estimate the reaction norms of ring width and wood density with respect to water availability. We investigated the role of phenotypic plasticity on the construction of hybrid larch heterosis and on the expression of its quantitative genetic parameters. The data came from an intra-/interspecific diallel mating design between both parental species. Progenies were grown in two environmentally contrasted sites, in France. Ring width plasticity with respect to water availability was confirmed, as all three taxa produced narrower rings under the lowest water availability. Hybrid larch appeared to be the most plastic taxon as its superiority over its parental species increased with increasing water availability. Despite the low heritabilities of the investigated traits, we found that the expression of a reliable negative correlation between them was conditional to the water availability environment. Finally, by means of a complementary simulation, we demonstrated that random regression can be applied to model the reaction norms of non-repeated records of phenotypic plasticity bound by a family structure. Random regression is a powerful tool for the modeling of reaction norms in various contexts, especially perennial species.


Subject(s)
Adaptation, Physiological/genetics , Hybrid Vigor/genetics , Larix/genetics , Hybridization, Genetic , Larix/growth & development , Soil , Water , Wood/genetics , Wood/growth & development
3.
Funct Plant Biol ; 35(10): 1059-1069, 2008 Dec.
Article in English | MEDLINE | ID: mdl-32688854

ABSTRACT

We developed a double-digitising method combining a hand-held electromagnetic digitizer and a non-contact 3D laser scanner. The former was used to record the positions of all leaves in a tree and the orientation angles of their lamina. The latter served to obtain the morphology of the leaves sampled in the tree. As the scanner outputs a cloud of points, software was developed to reconstruct non-planar (NP) leaves composed of triangles, and to compute numerical shape parameters: midrib curvature, torsion and transversal curvature of the lamina. The combination of both methods allowed construction of 3D virtual trees with NP leaves. The method was applied to young beech trees (Fagus sylvatica L.) from different sunlight environments (from 1 to 100% incident light) in a forest in central France. Leaf morphology responded to light availability, with a more bent shape in well-lit leaves. Light interception at the leaf scale by NP leaves decreased from 4 to 10% for shaded and sunlit leaves compared with planar leaves. At the tree scale, light interception by trees made of NP leaves decreased by 1 to 3% for 100% to 1% light, respectively.

4.
Tree Physiol ; 27(8): 1073-82, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17472934

ABSTRACT

Two-year-old Fagus sylvatica L. saplings were planted under the cover of a Pinus sylvestris L. stand in the French Massif Central. The stand was differentially thinned to obtain a gradient of transmitted photosynthetically active radiation (PAR(t); 0-0.35). Eighteen Fagus saplings were sampled in this gradient, and their growth (basal stem diameter increment) was recorded over six years. Over the same period, morphological parameters (leaf area, number and arrangement in space) were monitored by 3D-digitization. Photosynthetic parameters were estimated with a portable gas-exchange analyzer. Photosynthesis was mainly related to light availability, whereas sapling morphology was mainly driven by sapling size. Annual stem diameter increment was related to the amount of light-intercepting foliage (silhouette to total leaf area ratio (STAR) x total sapling leaf area (LA)) and light availability above the saplings (PAR(t)). However, light-use efficiency, i.e., the slope of the relationship between STAR x LA x PAR(t) and stem diameter increment, decreased over time as a result of a relative decrease in the proportion of photosynthetic tissues to total sapling biomass.


Subject(s)
Carbohydrates/biosynthesis , Fagus/growth & development , Light , Photosynthesis/physiology , Trees/growth & development , Carbon/metabolism , Fagus/metabolism , Pinus sylvestris/physiology , Plant Leaves/metabolism , Trees/metabolism
5.
Oecologia ; 148(3): 373-83, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16489460

ABSTRACT

In abandoned or extensively managed grasslands, the mechanisms involved in pioneer tree species success are not fully explained. Resource competition among plants and microclimate modifications have been emphasised as possible mechanisms to explain variation of survivorship and growth. In this study, we evaluated a number of mechanisms that may lead to successful survival and growth of seedlings of a pioneer tree species (Pinus sylvestris) in a grass-dominated grassland. Three-year-old Scots pines were planted in an extensively managed grassland of the French Massif Central and for 2 years were either maintained in bare soil or subjected to aerial and below-ground interactions induced by grass vegetation. Soil temperatures were slightly higher in bare soil than under the grass vegetation, but not to an extent explaining pine growth differences. The tall grass canopy reduced light transmission by 77% at ground level and by 20% in the upper part of Scots pine seedlings. Grass vegetation presence also significantly decreased soil volumetric water content (Hv) and soil nitrate in spring and in summer. In these conditions, the average tree height was reduced by 5% compared to trees grown in bare soil, and plant biomass was reduced by 85%. Scots pine intrinsic water-use efficiency (A/g), measured by leaf gas-exchange, increased when Hv decreased owing to a rapid decline of stomatal conductance (g). This result was also confirmed by delta 13C analyses of needles. A summer 15N labelling of seedlings and grass vegetation confirmed the higher NO3 capture capacity of grass vegetation in comparison with Scots pine seedlings. Our results provide evidence that the seedlings' success was linked to tolerance of below-ground resource depletion (particularly water) induced by grass vegetation based on morphological and physiological plasticity as well as to resource conservation.


Subject(s)
Ecosystem , Microclimate , Pinus sylvestris/physiology , Poaceae/physiology , Seedlings/physiology , Carbon Dioxide/metabolism , Carbon Isotopes/metabolism , Ion Exchange Resins , Light , Nitrates/analysis , Nitrogen Isotopes/metabolism , Pinus sylvestris/growth & development , Pinus sylvestris/metabolism , Plant Leaves/metabolism , Poaceae/growth & development , Poaceae/metabolism , Seedlings/growth & development , Seedlings/metabolism , Soil/analysis , Temperature , Water/analysis
6.
Tree Physiol ; 24(1): 45-54, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14652213

ABSTRACT

We examined morphological and physiological responses of beech (Fagus sylvatica L.) seedlings to grass-induced below ground competition in full-light conditions. Two-year-old beech seedlings were grown during two growing seasons in 160-l containers in bare soil or with a mixture of five grass species widely represented in semi-natural meadows of central France. At the end of the second growing season, beech seedlings in the presence of grass showed significant reductions in diameter and height growth, annual shoot elongation, and stem, root and leaf biomass, but an increase in root to shoot biomass ratio. Grasses greatly reduced soil water availability, which was positively correlated with daily seedling diameter increment. Beech seedlings seemed to respond to water deficit by anticipating stomatal closure. There was evidence of competition for nitrogen (N) by grasses, but its effect on seedling development could not be separated from that of competition for water. By labeling the plants with 15N, we showed that beech seedlings absorbed little N when grasses were present, whereas grasses took up more than 97% of the total N absorbed in the container. We conclude that, even if beech seedlings display morphological and physiological adaptation to below ground competition, their development in full-light conditions may be strongly restricted by competition from grass species.


Subject(s)
Fagus/physiology , Poaceae/physiology , Seedlings/physiology , Trees/physiology , Biomass , Fagus/anatomy & histology , Fagus/growth & development , Plant Leaves/physiology , Seedlings/anatomy & histology , Seedlings/growth & development , Soil , Trees/anatomy & histology , Trees/growth & development , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...