Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 268(Pt 1): 131837, 2024 May.
Article in English | MEDLINE | ID: mdl-38663707

ABSTRACT

Delayed wound healing is often caused by bacterial infections and persistent inflammation. Multifunctional materials with anti-bacterial, anti-inflammatory, and hemostatic properties are crucial for accelerated wound healing. In this study, we report a biomacromolecule-based scaffold (ArCh) by uniquely combining arabinogalactan (Ar) and chitosan (Ch) using a Schiff-based reaction. Further, the optimized ArCh scaffolds were loaded with Glycyrrhizin (GA: anti-inflammatory molecule) conjugated NIR light-absorbing Copper sulfide (CuS) nanoparticles. The resultant GACuS ArCh scaffolds were characterized for different wound healing parameters in in-vitro and in-vivo models. Our results indicated that GACuS ArCh scaffolds showed excellent swelling, biodegradation, and biocompatibility in vitro. Further results obtained indicated that GACuS ArCh scaffolds demonstrated mild hyperthermia and enhanced hemostatic, anti-oxidant, anti-bacterial, and wound-healing effects when exposed to NIR light. The scaffolds, upon further validation, may be beneficial in accelerating wound healing and tissue regeneration response.


Subject(s)
Biocompatible Materials , Chitosan , Galactans , Tissue Scaffolds , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Wound Healing/drug effects , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Galactans/chemistry , Galactans/pharmacology , Regeneration/drug effects , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Rats , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...