Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(7): e0211994, 2019.
Article in English | MEDLINE | ID: mdl-31276504

ABSTRACT

BACKGROUND: The population of stallion spermatozoa that survive thawing experience compromised mitochondrial functionality and accelerated senescence, among other changes. It is known that stallion spermatozoa show very active oxidative phosphorylation that may accelerate sperm senescence through increased production of reactive oxygen species. Rosiglitazone has been proven to enhance the glycolytic capability of stallion spermatozoa maintained at ambient temperature. OBJECTIVES: Thus, we hypothesized that thawed sperm may also benefit from rosiglitazone supplementation. MATERIALS AND METHODS: Thawed sperm were washed and resuspended in Tyrodes media, and the samples were divided and supplemented with 0 or 75 µM rosiglitazone. After one and two hours of incubation, mitochondrial functionality, Akt phosphorylation and caspase 3 activity were evaluated. Additional samples were incubated in the presence of an Akt1/2 inhibitor, compound C (an AMPK inhibitor) or GW9662 (an antagonist of the PPARγ receptor). RESULTS: Rosiglitazone maintained Akt phosphorylation and reduced caspase 3 activation (p<0.01), both of which were prevented by incubation in the presence of the three inhibitors. Rosiglitazone also enhanced mitochondrial functionality (P<0.01). CONCLUSION: We provide the first evidence that the functionality of frozen stallion spermatozoa can be potentially improved after thawing through the activation of pro survival pathways, providing new clues for improving current sperm biotechnology.


Subject(s)
Hypoglycemic Agents/administration & dosage , Mitochondria/drug effects , Rosiglitazone/administration & dosage , Semen Preservation/veterinary , Spermatozoa/drug effects , Animals , Caspase 3/metabolism , Cryopreservation/methods , Cryopreservation/veterinary , Horses , Male , Mitochondria/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Semen Preservation/methods , Spermatozoa/metabolism
2.
Front Vet Sci ; 6: 83, 2019.
Article in English | MEDLINE | ID: mdl-30968032

ABSTRACT

A 2 years old dog was brought to the clinic with complains of testicular enlargement. The tissue was diffusely affected as confirmed by ultrasonographic examination, being the right testicle atrophied and the right epididymis enlarged, with loss of echotexture and presence of several anechogenic areas. The situation required the excision of the referred testicle and epididymis. Final diagnose made by histopathological analysis was primary unilateral low-grade paratesticular leiomyosarcoma. Scarce bibliography is found on this matter, with several cases reported on human, and none in dog. This case report is therefore an important milestone on the area of small animal oncology directly related to the reproductive tissue.

3.
Biol Reprod ; 100(4): 1090-1107, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30418487

ABSTRACT

We hypothesized that thiols and particularly glutathione (GSH) are essential for the regulation of stallion sperm functionality. To test this hypothesis, we initially investigated the relationship between sperm function and GSH content, revealing highly significant correlations between GSH, sperm viability, motility, and velocity parameters (P < 0.001). Furthermore, the deleterious effects of GSH depletion using menadione and 1,3 dimethoxy 1,4, naphtoquinone (DMNQ) were able to be prevented by the addition of cysteine, but no other antioxidant. Pre-incubation with cysteine prevented menadione and DMNQ induced damage to sperm membranes after 1 h (P < 0.001; P < 0.05) and after 3 h of incubation (P < 0.001, P < 0.05). Pre-incubation with cysteine ameliorated both the menadione- and DMNQ-induced increase in 4-hydroxynonenal (P < 0.001). As cysteine is a precursor of GSH, we hypothesized that stallion spermatozoa are able to synthesize this tripeptide using exogenous cysteine. To test this hypothesis, we investigated the presence of two enzymes required to synthesize GSH (GSH and GCLC) and using western blotting and immunocytochemistry we detected both enzymes in stallion spermatozoa. The inhibition of GCLC reduced the recovery of GSH by addition of cysteine after depletion, suggesting that stallion spermatozoa may use exogenous cysteine to regulate GSH. Other findings supporting this hypothesis were changes in sperm functionality after BSO treatment and changes in GSH and GSSG validated using HPLC-MS, showing that BSO prevented the increase in GSH in the presence of cysteine, although important stallion to stallion variability occurred and suggested differences in expression of glutamate cysteine ligase. Mean concentration of GSH in stallion spermatozoa was 8.2 ± 2.1 µM/109 spermatozoa, well above the nanomolar ranges per billion spermatozoa reported for other mammals.


Subject(s)
Aldehydes/metabolism , Cellular Senescence , Glutathione/physiology , Spermatozoa/physiology , Sulfhydryl Compounds/metabolism , Aldehydes/pharmacology , Animals , Cellular Senescence/drug effects , Glutathione/metabolism , Horses , Lipid Peroxidation/drug effects , Male , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Semen Analysis , Semen Preservation , Sperm Motility , Spermatozoa/chemistry , Spermatozoa/drug effects , Spermatozoa/metabolism
4.
Reproduction ; 148(2): 221-35, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24850868

ABSTRACT

AKT, also referred to as protein kinase B (PKB or RAC), plays a critical role in controlling cell survival and apoptosis. To gain insights into the mechanisms regulating sperm survival after ejaculation, the role of AKT was investigated in stallion spermatozoa using a specific inhibitor and a phosphoflow approach. Stallion spermatozoa were washed and incubated in Biggers-Whitten-Whittingham medium, supplemented with 1% polyvinyl alcohol (PVA) in the presence of 0 (vehicle), 10, 20 or 30 µM SH5, an AKT inhibitor. SH5 treatment reduced the percentage of sperm displaying AKT phosphorylation, with inhibition reaching a maximum after 1 h of incubation. This decrease in phosphorylation was attributable to either dephosphorylation or suppression of the active phosphorylation pathway. Stallion spermatozoa spontaneously dephosphorylated during in vitro incubation, resulting in a lack of a difference in AKT phosphorylation between the SH5-treated sperm and the control after 4 h of incubation. AKT inhibition decreased the proportion of motile spermatozoa (total and progressive) and the sperm velocity. Similarly, AKT inhibition reduced membrane integrity, leading to increased membrane permeability and reduced the mitochondrial membrane potential concomitantly with activation of caspases 3 and 7. However, the percentage of spermatozoa exhibiting oxidative stress, the production of mitochondrial superoxide radicals, DNA oxidation and DNA fragmentation were not affected by AKT inhibition. It is concluded that AKT maintains the membrane integrity of ejaculated stallion spermatozoa, presumably by inhibiting caspases 3 and 7, which prevents the progression of spermatozoa to an incomplete form of apoptosis.


Subject(s)
Caspase 3/chemistry , Caspase 7/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Semen Preservation , Sperm Motility , Spermatozoa/cytology , Animals , Apoptosis , Blotting, Western , Caspase 3/metabolism , Caspase 7/metabolism , Cell Proliferation , Cells, Cultured , Flow Cytometry , Horses , Immunoenzyme Techniques , Male , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Semen Analysis , Spermatozoa/metabolism
5.
PLoS One ; 7(1): e30688, 2012.
Article in English | MEDLINE | ID: mdl-22292020

ABSTRACT

Apoptosis has been recognized as a cause of sperm death during cryopreservation and a cause of infertility in humans, however there is no data on its role in sperm death during conservation in refrigeration; autophagy has not been described to date in mature sperm. We investigated the role of apoptosis and autophagy during cooled storage of stallion spermatozoa. Samples from seven stallions were split; half of the ejaculate was processed by single layer centrifugation, while the other half was extended unprocessed, and stored at 5°C for five days. During the time of storage, sperm motility (CASA, daily) and membrane integrity (flow cytometry, daily) were evaluated. Apoptosis was evaluated on days 1, 3 and 5 (active caspase 3, increase in membrane permeability, phosphatidylserine translocation and mitochondrial membrane potential) using flow cytometry. Furthermore, LC3B processing was investigated by western blotting at the beginning and at the end of the period of storage. The decrease in sperm quality over the period of storage was to a large extent due to apoptosis; single layer centrifugation selected non-apoptotic spermatozoa, but there were no differences in sperm motility between selected and unselected sperm. A high percentage of spermatozoa showed active caspase 3 upon ejaculation, and during the period of storage there was an increase of apoptotic spermatozoa but no changes in the percentage of live sperm, revealed by the SYBR-14/PI assay, were observed. LC3B was differentially processed in sperm after single layer centrifugation compared with native sperm. In processed sperm more LC3B-II was present than in non-processed samples; furthermore, in non-processed sperm there was an increase in LC3B-II after five days of cooled storage. These results indicate that apoptosis plays a major role in the sperm death during storage in refrigeration and that autophagy plays a role in the survival of spermatozoa representing a new pro-survival mechanism in spermatozoa not previously described.


Subject(s)
Apoptosis/physiology , Autophagy/physiology , Horses/physiology , Refrigeration , Semen Preservation , Spermatozoa/physiology , Animals , Biological Transport , Biomechanical Phenomena/physiology , Cell Death , Cell Membrane Permeability/physiology , Cell Survival , Male , Phosphatidylserines/metabolism , Refrigeration/veterinary , Semen Analysis , Semen Preservation/methods , Semen Preservation/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...