Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(42): e2305712120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37812723

ABSTRACT

Despite passing routine laboratory tests for semen quality, bulls used in artificial insemination exhibit significant variation in fertility. Routine analysis of fertility data identified a dairy bull with extreme subfertility (10% pregnancy rate). To characterize the subfertility phenotype, a range of in vitro, in vivo, and molecular assays were carried out. Sperm from the subfertile bull exhibited reduced motility and severely reduced caffeine-induced hyperactivation compared to controls. Ability to penetrate the zona pellucida, cleavage rate, cleavage kinetics, and blastocyst yield after IVF or AI were significantly lower than in control bulls. Whole-genome sequencing from semen and RNA sequencing of testis tissue revealed a critical mutation in adenylate kinase 9 (AK9) that impaired splicing, leading to a premature termination codon and a severely truncated protein. Mice deficient in AK9 were generated to further investigate the function of the gene; knockout males were phenotypically indistinguishable from their wild-type littermates but produced immotile sperm that were incapable of normal fertilization. These sperm exhibited numerous abnormalities, including a low ATP concentration and reduced motility. RNA-seq analysis of their testis revealed differential gene expression of components of the axoneme and sperm flagellum as well as steroid metabolic processes. Sperm ultrastructural analysis showed a high percentage of sperm with abnormal flagella. Combined bovine and murine data indicate the essential metabolic role of AK9 in sperm motility and/or hyperactivation, which in turn affects sperm binding and penetration of the zona pellucida. Thus, AK9 has been found to be directly implicated in impaired male fertility in mammals.


Subject(s)
Adenylate Kinase , Infertility , Semen , Animals , Cattle , Female , Male , Mice , Pregnancy , Adenylate Kinase/genetics , Adenylate Kinase/metabolism , Fertility , Mammals , Semen/metabolism , Semen Analysis , Sperm Motility , Spermatozoa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...