Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters










Publication year range
2.
Org Biomol Chem ; 22(3): 590-605, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38131271

ABSTRACT

Biphenyl-fused-dioxacyclodecynes are a promising class of strained alkyne for use in Cu-free 'click' reactions. In this paper, a series of functionalised derivatives of this class of reagent, containing fluorescent groups, are described. Studies aimed at understanding and increasing the reactivity of the alkynes are also presented, together with an investigation of the bioconjugation of the reagents with an azide-labelled protein.

3.
Nat Biotechnol ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38081970

ABSTRACT

StayGold is an exceptionally bright and stable fluorescent protein that is highly resistant to photobleaching. Despite favorable fluorescence properties, use of StayGold as a fluorescent tag is limited because it forms a natural dimer. Here we report the 1.6 Å structure of StayGold and generate a derivative, mStayGold, that retains the brightness and photostability of the original protein while being fully monomeric.

4.
Nat Commun ; 14(1): 7989, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042893

ABSTRACT

The implications of the existence of different actins expressed in epithelial cells for network mechanics and dynamics is investigated by microrheology and confocal imaging. γ-actin predominately found in the apical cortex forms stiffer networks compared to ß-actin, which is preferentially organized in stress fibers. We attribute this to selective interactions with Mg2+-ions interconnecting the filaments' N-termini. Bundling propensity of the isoforms is different in the presence of Mg2+-ions, while crosslinkers such as α-actinin, fascin, and heavy meromyosin alter the mechanical response independent of the isoform. In the presence of myosin, ß-actin networks show a large number of small contraction foci, while γ-actin displays larger but fewer foci indicative of a stronger interaction with myosin motors. We infer that subtle changes in the amino acid sequence of actin isoforms lead to alterations of the mechanical properties on the network level with potential implications for specific biological functions.


Subject(s)
Actinin , Actins , Actins/metabolism , Actinin/metabolism , Myosins/metabolism , Protein Isoforms , Ions , Actin Cytoskeleton/metabolism
5.
Elife ; 122023 02 15.
Article in English | MEDLINE | ID: mdl-36790143

ABSTRACT

Actin isoforms organize into distinct networks that are essential for the normal function of eukaryotic cells. Despite a high level of sequence and structure conservation, subtle differences in their design principles determine the interaction with myosin motors and actin-binding proteins. Therefore, identifying how the structure of actin isoforms relates to function is important for our understanding of normal cytoskeletal physiology. Here, we report the high-resolution structures of filamentous skeletal muscle α-actin (3.37 Å), cardiac muscle α-actin (3.07 Å), ß-actin (2.99 Å), and γ-actin (3.38 Å) in the Mg2+·ADP state with their native post-translational modifications. The structures revealed isoform-specific conformations of the N-terminus that shift closer to the filament surface upon myosin binding, thereby establishing isoform-specific interfaces. Collectively, the structures of single-isotype, post-translationally modified bare skeletal muscle α-actin, cardiac muscle α-actin, ß-actin, and γ-actin reveal general principles, similarities, and differences between isoforms. They complement the repertoire of known actin structures and allow for a comprehensive understanding of in vitro and in vivo functions of actin isoforms.


The protein actin is important for many fundamental processes in biology, from contracting muscle to dividing a cell in two. As actin is involved in such a variety of roles, human cells have slightly different versions of the protein, known as isoforms. For example, alpha-actin is vital for contracting muscle, while beta- and gamma-actin drive cellular processes in non-muscle cells. In order to carry out its various functions, actin interacts with many other proteins inside the cell, such as myosin motors which power muscle contraction. These interactions rely on the precise chain of building blocks, known as amino acids, that make up the actin isoforms; even subtle alterations in this sequence can influence the behavior of the protein. However, it is not clear how differences in the amino acid sequence of the actin isoforms impact actin's interactions with other proteins. Arora et al. addressed this by studying the structure of four human actin isoforms using a technique called cryo-electron microscopy, where the proteins are flash-frozen and bombarded with electrons. These experiments showed where differences between the amino acid chains of each isoform were located in the protein. Arora et al. then compared their structures with previous work showing the structure of actin bound to myosin. This revealed that the tail-end of the protein (known as the N-terminus) differed in shape between the four isoforms, and this variation may influence how actin binds to others proteins in the cell. These results are an important foundation for further work on actin and how it interacts with other proteins. The structures could help researchers design new tools that can be used to target specific isoforms of actin in different types of laboratory experiments.


Subject(s)
Actins , Myosins , Actins/metabolism , Protein Isoforms/metabolism , Myosins/metabolism , Muscle, Skeletal/metabolism , Actin Cytoskeleton/metabolism
6.
Proc Natl Acad Sci U S A ; 119(43): e2211431119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36264833

ABSTRACT

Actomyosin contractile force produced by myosin II molecules that bind and pull actin filaments is harnessed for diverse functions, from cell division by the cytokinetic contractile ring to morphogenesis driven by supracellular actomyosin networks during development. However, actomyosin contractility is intrinsically unstable to self-reinforcing spatial variations that may destroy the actomyosin architecture if unopposed. How cells control this threat is not established, and while large myosin fluctuations and punctateness are widely reported, the full course of the instability in cells has not been observed. Here, we observed the instability run its full course in isolated cytokinetic contractile rings in cell ghosts where component turnover processes are absent. Unprotected by turnover, myosin II merged hierarchically into aggregates with increasing amounts of myosin and increasing separation, up to a maximum separation. Molecularly explicit simulations reproduced the hierarchical aggregation which precipitated tension loss and ring fracture and identified the maximum separation as the length of actin filaments mediating mechanical communication between aggregates. In the final simulated dead-end state, aggregates were morphologically quiescent, including asters with polarity-sorted actin, similar to the dead-end state observed in actomyosin systems in vitro. Our results suggest the myosin II turnover time controls actomyosin contractile instability in normal cells, long enough for aggregation to build robust aggregates but sufficiently short to intercept catastrophic hierarchical aggregation and fracture.


Subject(s)
Actins , Actomyosin , Actomyosin/metabolism , Actins/metabolism , Actin Cytoskeleton/metabolism , Myosins/metabolism , Myosin Type II/metabolism , Cytokinesis/physiology , Cytoskeletal Proteins/metabolism
7.
J Cell Sci ; 135(18)2022 09 15.
Article in English | MEDLINE | ID: mdl-36148799

ABSTRACT

Tropomyosins are structurally conserved α-helical coiled-coil proteins that bind along the length of filamentous actin (F-actin) in fungi and animals. Tropomyosins play essential roles in the stability of actin filaments and in regulating myosin II contractility. Despite the crucial role of tropomyosin in actin cytoskeletal regulation, in vivo investigations of tropomyosin are limited, mainly due to the suboptimal live-cell imaging tools currently available. Here, we report on an mNeonGreen (mNG)-tagged tropomyosin, with native promoter and linker length configuration, that clearly reports tropomyosin dynamics in Schizosaccharomyces pombe (Cdc8), Schizosaccharomyces japonicus (Cdc8) and Saccharomyces cerevisiae (Tpm1 and Tpm2). We also describe a fluorescent probe to visualize mammalian tropomyosin (TPM2 isoform). Finally, we generated a camelid nanobody against S. pombe Cdc8, which mimics the localization of mNG-Cdc8 in vivo. Using these tools, we report the presence of tropomyosin in previously unappreciated patch-like structures in fission and budding yeasts, show flow of tropomyosin (F-actin) cables to the cytokinetic actomyosin ring and identify rearrangements of the actin cytoskeleton during mating. These powerful tools and strategies will aid better analyses of tropomyosin and F-actin cables in vivo.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Single-Domain Antibodies , Actin Cytoskeleton/metabolism , Actins/metabolism , Actomyosin/metabolism , Animals , Cell Cycle Proteins/metabolism , Cytokinesis , Fluorescent Dyes/metabolism , Mammals/metabolism , Protein Isoforms/metabolism , Saccharomyces cerevisiae/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Single-Domain Antibodies/metabolism , Tropomyosin/genetics , Tropomyosin/metabolism
8.
J Biol Chem ; 298(11): 102518, 2022 11.
Article in English | MEDLINE | ID: mdl-36152749

ABSTRACT

The great diversity in actin network architectures and dynamics is exploited by cells to drive fundamental biological processes, including cell migration, endocytosis, and cell division. While it is known that this versatility is the result of the many actin-remodeling activities of actin-binding proteins, such as Arp2/3 and cofilin, recent work also implicates posttranslational acetylation or arginylation of the actin N terminus itself as an equally important regulatory mechanism. However, the molecular mechanisms by which acetylation and arginylation alter the properties of actin are not well understood. Here, we directly compare how processing and modification of the N terminus of actin affects its intrinsic polymerization dynamics and its remodeling by actin-binding proteins that are essential for cell migration. We find that in comparison to acetylated actin, arginylated actin reduces intrinsic as well as formin-mediated elongation and Arp2/3-mediated nucleation. By contrast, there are no significant differences in cofilin-mediated severing. Taken together, these results suggest that cells can employ these differently modified actins to regulate actin dynamics. In addition, unprocessed actin with an N-terminal methionine residue shows very different effects on formin-mediated elongation, Arp2/3-mediated nucleation, and severing by cofilin. Altogether, this study shows that the nature of the N terminus of actin can promote distinct actin network dynamics, which can be differentially used by cells to locally finetune actin dynamics at distinct cellular locations, such as at the leading edge.


Subject(s)
Actin Depolymerizing Factors , Actins , Actins/metabolism , Formins , Acetylation , Actin Depolymerizing Factors/metabolism , Microfilament Proteins/metabolism , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/metabolism
9.
Elife ; 102021 07 16.
Article in English | MEDLINE | ID: mdl-34269679

ABSTRACT

Actin filaments are central to numerous biological processes in all domains of life. Driven by the interplay with molecular motors, actin binding and actin modulating proteins, the actin cytoskeleton exhibits a variety of geometries. This includes structures with a curved geometry such as axon-stabilizing actin rings, actin cages around mitochondria and the cytokinetic actomyosin ring, which are generally assumed to be formed by short linear filaments held together by actin cross-linkers. However, whether individual actin filaments in these structures could be curved and how they may assume a curved geometry remains unknown. Here, we show that 'curly', a region from the IQGAP family of proteins from three different organisms, comprising the actin-binding calponin-homology domain and a C-terminal unstructured domain, stabilizes individual actin filaments in a curved geometry when anchored to lipid membranes. Although F-actin is semi-flexible with a persistence length of ~10 µm, binding of mobile curly within lipid membranes generates actin filament arcs and full rings of high curvature with radii below 1 µm. Higher rates of fully formed actin rings are observed in the presence of the actin-binding coiled-coil protein tropomyosin and when actin is directly polymerized on lipid membranes decorated with curly. Strikingly, curly induced actin filament rings contract upon the addition of muscle myosin II filaments and expression of curly in mammalian cells leads to highly curved actin structures in the cytoskeleton. Taken together, our work identifies a new mechanism to generate highly curved actin filaments, which opens a range of possibilities to control actin filament geometries, that can be used, for example, in designing synthetic cytoskeletal structures.


Subject(s)
Actin Cytoskeleton/metabolism , Calcium-Binding Proteins/metabolism , Microfilament Proteins/metabolism , Actins/metabolism , Actomyosin/metabolism , Animals , Cytoskeleton/metabolism , HEK293 Cells , Humans , Microtubules/metabolism , Muscles/metabolism , Myosin Type II/metabolism , Protein Binding , Tropomyosin/metabolism , Calponins
10.
Mol Biol Cell ; 32(3): 237-246, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33326250

ABSTRACT

Cytokinesis in many eukaryotes is dependent on a contractile actomyosin ring (AMR), composed of F-actin, myosin II, and other actin and myosin II regulators. Through fluorescence recovery after photobleaching experiments, many components of the AMR have been shown to be mobile and to undergo constant exchange with the cytosolic pools. However, how the mobility of its components changes at distinct stages of mitosis and cytokinesis has not been addressed. Here, we describe the mobility of eight Schizosaccharomyces pombe AMR proteins at different stages of mitosis and cytokinesis using an approach we have developed. We identified three classes of proteins, which showed 1) high (Ain1, Myo2, Myo51), 2) low (Rng2, Mid1, Myp2, Cdc12), and 3) cell cycle-dependent (Cdc15) mobile fractions. We observed that the F-BAR protein Cdc15 undergoes a 20-30% reduction in its mobile fraction after spindle breakdown and initiation of AMR contraction. Moreover, our data indicate that this change in Cdc15 mobility is dependent on the septation initiation network (SIN). Our work offers a novel strategy for estimating cell cycle-dependent mobile protein fractions in cellular structures and provides a valuable dataset, that is of interest to researchers working on cytokinesis.


Subject(s)
Actomyosin/metabolism , Contractile Proteins/metabolism , Cytokinesis/physiology , Actin Cytoskeleton/metabolism , Actins/metabolism , Actomyosin/physiology , Cell Cycle/physiology , Cell Cycle Proteins/metabolism , Contractile Proteins/physiology , Cytokinesis/genetics , Cytoskeletal Proteins/metabolism , Fluorescence Recovery After Photobleaching/methods , GTP-Binding Proteins/metabolism , Mitosis/physiology , Myosin Heavy Chains/metabolism , Myosin Type II/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism
11.
Wellcome Open Res ; 5: 161, 2020.
Article in English | MEDLINE | ID: mdl-32802966

ABSTRACT

Tropomyosins are coiled-coil proteins that regulate the stability and / or function of actin cytoskeleton in muscle and non-muscle cells through direct binding of actin filaments. Recently, using the fission yeast, we discovered a new mechanism by which phosphorylation of serine 125 of tropomyosin (Cdc8), reduced its affinity for actin filaments thereby providing access for the actin severing protein Adf1/Cofilin to actin filaments causing instability of actin filaments. Here we use a genetic code expansion strategy to directly examine this conclusion. We produced in Escherichia coli Cdc8-tropomyosin bearing a phosphate group on Serine-125 (Cdc8 PS125), using an orthogonal tRNA-tRNA synthetase pair that directly incorporates phosphoserine into proteins in response to a UAG codon in the corresponding mRNA. We show using total internal reflection (TIRF) microscopy that, whereas E.coli produced Cdc8 PS125 does not bind actin filaments, Cdc8 PS125 incubated with lambda phosphatase binds actin filaments. This work directly demonstrates that a phosphate moiety present on serine 125 leads to decreased affinity of Cdc8-tropomyosin for actin filaments. We also extend the work to demonstrate the usefulness of the genetic code expansion approach in imaging actin cytoskeletal components.

12.
Mol Biol Cell ; 31(21): 2306-2314, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32755476

ABSTRACT

Eukaryotic cells assemble actomyosin rings during cytokinesis to function as force-generating machines to drive membrane invagination and to counteract the intracellular pressure and the cell surface tension. How the extracellular matrix affects actomyosin ring contraction has not been fully explored. While studying the Schizosaccharomyces pombe 1,3-ß-glucan-synthase mutant cps1-191, which is defective in division septum synthesis and arrests with a stable actomyosin ring, we found that weakening of the extracellular glycan matrix caused the generated spheroplasts to divide under the nonpermissive condition. This nonmedial slow division was dependent on a functional actomyosin ring and vesicular trafficking, but independent of normal septum synthesis. Interestingly, the high intracellular turgor pressure appears to play a minimal role in inhibiting ring contraction in the absence of cell wall remodeling in cps1-191 mutants, as decreasing the turgor pressure alone did not enable spheroplast division. We propose that during cytokinesis, the extracellular glycan matrix restricts actomyosin ring contraction and membrane ingression, and remodeling of the extracellular components through division septum synthesis relieves the inhibition and facilitates actomyosin ring contraction.


Subject(s)
Actomyosin/metabolism , Cell Membrane , Cytokinesis , Schizosaccharomyces/metabolism , Actomyosin/physiology , Cell Wall , Cytoskeleton/metabolism , Cytoskeleton/physiology , Glucosyltransferases/genetics , Mutation , Schizosaccharomyces/physiology , Schizosaccharomyces pombe Proteins
13.
Mol Biol Cell ; 31(19): 2107-2114, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32614646

ABSTRACT

The actin cytoskeleton plays a variety of roles in eukaryotic cell physiology, ranging from cell polarity and migration to cytokinesis. Key to the function of the actin cytoskeleton is the mechanisms that control its assembly, stability, and turnover. Through genetic analyses in Schizosaccharomyces pombe, we found that myo2-S1 (myo2-G515D), a Myosin II mutant allele, was capable of rescuing lethality caused by partial defects in actin nucleation/stability caused, for example, through compromised function of the actin-binding protein Cdc3-profilin. The mutation in myo2-S1 affects the activation loop of Myosin II, which is involved in physical interaction with subdomain 1 of actin and in stimulating the ATPase activity of Myosin. Consistently, actomyosin rings in myo2-S1 cell ghosts were unstable and severely compromised in contraction on ATP addition. These studies strongly suggest a role for Myo2 in actin cytoskeletal disassembly and turnover in vivo, and that compromise of this activity leads to genetic suppression of mutants defective in actin filament assembly/stability at the division site.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Cycle Proteins/metabolism , Myosin Heavy Chains/metabolism , Myosin Type II/metabolism , Profilins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Suppression, Genetic , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Gene Expression Regulation, Fungal , Mutation , Profilins/deficiency , Profilins/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/physiology , Schizosaccharomyces pombe Proteins/genetics
14.
J Cell Biol ; 219(8)2020 08 03.
Article in English | MEDLINE | ID: mdl-32497213

ABSTRACT

Nearly six decades ago, Lewis Wolpert proposed the relaxation of the polar cell cortex by the radial arrays of astral microtubules as a mechanism for cleavage furrow induction. While this mechanism has remained controversial, recent work has provided evidence for polar relaxation by astral microtubules, although its molecular mechanisms remain elusive. Here, using C. elegans embryos, we show that polar relaxation is achieved through dynein-mediated removal of myosin II from the polar cortexes. Mutants that position centrosomes closer to the polar cortex accelerated furrow induction, whereas suppression of dynein activity delayed furrowing. We show that dynein-mediated removal of myosin II from the polar cortexes triggers a bidirectional cortical flow toward the cell equator, which induces the assembly of the actomyosin contractile ring. These results provide a molecular mechanism for the aster-dependent polar relaxation, which works in parallel with equatorial stimulation to promote robust cytokinesis.


Subject(s)
Actomyosin/metabolism , Anaphase , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/enzymology , Centrosome/enzymology , Cytokinesis , Dyneins/metabolism , Microtubules/enzymology , Myosin Type II/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Dyneins/genetics , Microtubules/genetics , Mutation , Myosin Type II/genetics , Signal Transduction
15.
J Cell Sci ; 133(2)2020 01 30.
Article in English | MEDLINE | ID: mdl-31964701

ABSTRACT

Actin is one of the most abundant eukaryotic cytoskeletal polymer-forming proteins, which, in the filamentous form, regulates a number of physiological processes, ranging from cell division and migration to development and tissue function. Actins have different post-translational modifications (PTMs) in different organisms, including methionine, alanine, aspartate and glutamate N-acetylation, N-arginylation and the methylation of the histidine at residue 73 (His-73), with different organisms displaying a distinct signature of PTMs. Currently, methods are not available to produce actin isoforms with an organism-specific PTM profile. Here, we report the Pick-ya actin method, a method to express actin isoforms from any eukaryote with its own key characteristic PTM pattern. We achieve this using a synthetic biology strategy in a yeast strain that expresses, one, actin isoforms with the desired N-end via ubiquitin fusion and, two, mammalian enzymes that promote acetylation and methylation. Pick-ya actin should greatly facilitate biochemical, structural and physiological studies of the actin cytoskeleton and its PTMs.


Subject(s)
Actins/metabolism , Protein Isoforms/metabolism , Protein Processing, Post-Translational/genetics , Humans
16.
J Cell Biol ; 218(11): 3548-3559, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31597679

ABSTRACT

Tropomyosin is a coiled-coil actin binding protein key to the stability of actin filaments. In muscle cells, tropomyosin is subject to calcium regulation, but its regulation in nonmuscle cells is not understood. Here, we provide evidence that the fission yeast tropomyosin, Cdc8, is regulated by phosphorylation of a serine residue. Failure of phosphorylation leads to an increased number and stability of actin cables and causes misplacement of the division site in certain genetic backgrounds. Phosphorylation of Cdc8 weakens its interaction with actin filaments. Furthermore, we show through in vitro reconstitution that phosphorylation-mediated release of Cdc8 from actin filaments facilitates access of the actin-severing protein Adf1 and subsequent filament disassembly. These studies establish that phosphorylation may be a key mode of regulation of nonmuscle tropomyosins, which in fission yeast controls actin filament stability and division site placement.


Subject(s)
Actins/metabolism , Schizosaccharomyces/cytology , Schizosaccharomyces/metabolism , Tropomyosin/metabolism , Phosphorylation
17.
Int J Mol Sci ; 20(10)2019 May 26.
Article in English | MEDLINE | ID: mdl-31130675

ABSTRACT

Site-specific incorporation of un-natural amino acids (UNAA) is a powerful approach to engineer and understand protein function. Site-specific incorporation of UNAAs is achieved through repurposing the amber codon (UAG) as a sense codon for the UNAA, using a tRNACUA that base pairs with an UAG codon in the mRNA and an orthogonal amino-acyl tRNA synthetase (aaRS) that charges the tRNACUA with the UNAA. Here, we report an expansion of the zebrafish genetic code to incorporate the UNAAs, azido-lysine (AzK), bicyclononyne-lysine (BCNK), and diazirine-lysine (AbK) into green fluorescent protein (GFP) and glutathione-s-transferase (GST). We also present proteomic evidence for UNAA incorporation into GFP. Our work sets the stage for the use of AzK, BCNK, and AbK introduction into proteins as a means to investigate and engineer their function in zebrafish.


Subject(s)
Lysine/analogs & derivatives , Protein Engineering/methods , Zebrafish/genetics , Animals , Codon, Terminator/genetics , Genetic Code , Glutathione Transferase/genetics , Green Fluorescent Proteins/genetics , Lysine/genetics , Zebrafish Proteins/genetics
18.
Mol Biol Cell ; 30(8): 933-941, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30759055

ABSTRACT

In many eukaryotes, cytokinesis is facilitated by the contraction of an actomyosin ring (AMR). The exact mechanisms that lead to this contractility are unknown, although some models posit that actin turnover in the AMR is essential. The effect of reduced actin dynamics during AMR formation has been well studied in Schizosaccharomyces pombe; however, the corresponding effects on AMR contraction are not well understood. By using mutants of the fission yeast actin severing protein Adf1, we observed that contracting AMRs display a "peeling" phenotype, where bundles of actin and myosin peel off from one side of the AMR, and are pulled across to the opposite side. This occurs multiple times during cytokinesis and is dependent on the activity of myosins Myo2, Myp2, and Myo51. We found that the distribution of Myo2 in the AMR anticorrelates with the location of peeling events, suggesting that peeling is caused by a nonuniform tension distribution around the AMR, and that one of the roles of actin turnover is to maintain a uniform tension distribution around the AMR.


Subject(s)
Actins/metabolism , Actomyosin/physiology , Cytokinesis/physiology , Actin Cytoskeleton/metabolism , Actin Depolymerizing Factors/metabolism , Actomyosin/metabolism , Cell Division/physiology , Microfilament Proteins/metabolism , Myosin Heavy Chains/metabolism , Myosin Type II/metabolism , Myosins/metabolism , Phenotype , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
19.
EMBO Rep ; 19(11)2018 11.
Article in English | MEDLINE | ID: mdl-30206188

ABSTRACT

In fission yeast, the lengths of interphase microtubule (iMT) arrays are adapted to cell length to maintain cell polarity and to help centre the nucleus and cell division ring. Here, we show that length regulation of iMTs is dictated by spatially regulated competition between MT-stabilising Tea2/Tip1/Mal3 (Kinesin-7) and MT-destabilising Klp5/Klp6/Mcp1 (Kinesin-8) complexes at iMT plus ends. During MT growth, the Tea2/Tip1/Mal3 complex remains bound to the plus ends of iMT bundles, thereby restricting access to the plus ends by Klp5/Klp6/Mcp1, which accumulate behind it. At cell ends, Klp5/Klp6/Mcp1 invades the space occupied by the Tea2/Tip1/Tea1 kinesin complex triggering its displacement from iMT plus ends and MT catastrophe. These data show that in vivo, whilst an iMT length-dependent model for catastrophe factor accumulation has validity, length control of iMTs is an emergent property reflecting spatially regulated competition between distinct kinesin complexes at the MT plus tip.


Subject(s)
Kinesins/metabolism , Microtubules/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/cytology , Cell Polarity , Interphase/physiology , Kinesins/genetics , Microscopy, Fluorescence , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics
20.
J Cell Sci ; 131(8)2018 04 23.
Article in English | MEDLINE | ID: mdl-29535210

ABSTRACT

Actins are major eukaryotic cytoskeletal proteins, and they are involved in many important cell functions, including cell division, cell polarity, wound healing and muscle contraction. Despite obvious drawbacks, muscle actin, which is easily purified, is used extensively for biochemical studies of the non-muscle actin cytoskeleton. Here, we report a rapid and cost-effective method to purify heterologous actins expressed in the yeast Pichia pastoris Actin is expressed as a fusion with the actin-binding protein thymosin ß4 and purified by means of an affinity tag introduced in the fusion. Following cleavage of thymosin ß4 and the affinity tag, highly purified functional full-length actin is liberated. We purify actins from Saccharomycescerevisiae and Schizosaccharomycespombe, and the ß- and γ-isoforms of human actin. We also report a modification of the method that facilitates expression and purification of arginylated actin, a form of actin thought to regulate dendritic actin networks in mammalian cells. The methods we describe can be performed in all laboratories equipped for molecular biology, and should greatly facilitate biochemical and cell biological studies of the actin cytoskeleton.


Subject(s)
Actins/metabolism , Protein Isoforms/metabolism , Animals , Humans , Pichia
SELECTION OF CITATIONS
SEARCH DETAIL
...