Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Nat Plants ; 10(5): 749-759, 2024 May.
Article in English | MEDLINE | ID: mdl-38641663

ABSTRACT

Epigenetic gene silencing induced by expanded repeats can cause diverse phenotypes ranging from severe growth defects in plants to genetic diseases such as Friedreich's ataxia in humans. The molecular mechanisms underlying repeat expansion-induced epigenetic silencing remain largely unknown. Using a plant model with a temperature-sensitive phenotype, we have previously shown that expanded repeats can induce small RNAs, which in turn can lead to epigenetic silencing through the RNA-dependent DNA methylation pathway. Here, using a genetic suppressor screen and yeast two-hybrid assays, we identified novel components required for epigenetic silencing caused by expanded repeats. We show that FOURTH ULP GENE CLASS 1 (FUG1)-an uncharacterized SUMO protease with no known role in gene silencing-is required for epigenetic silencing caused by expanded repeats. In addition, we demonstrate that FUG1 physically interacts with ALFIN-LIKE 3 (AL3)-a histone reader that is known to bind to active histone mark H3K4me2/3. Loss of function of AL3 abolishes epigenetic silencing caused by expanded repeats. AL3 physically interacts with the chromodomain protein LIKE HETEROCHROMATIN 1 (LHP1)-known to be associated with the spread of the repressive histone mark H3K27me3 to cause repeat expansion-induced epigenetic silencing. Loss of any of these components suppresses repeat expansion-associated phenotypes coupled with an increase in IIL1 expression with the reversal of gene silencing and associated change in epigenetic marks. Our findings suggest that the FUG1-AL3-LHP1 module is essential to confer repeat expansion-associated epigenetic silencing and highlight the importance of post-translational modifiers and histone readers in epigenetic silencing.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Silencing , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , DNA Repeat Expansion/genetics , Epigenesis, Genetic , Gene Expression Regulation, Plant , Histones/metabolism , Histones/genetics
2.
Trends Plant Sci ; 28(10): 1098-1100, 2023 10.
Article in English | MEDLINE | ID: mdl-37574427

ABSTRACT

In 1998, Bill Gray and colleagues showed that warm temperatures trigger arabidopsis hypocotyl elongation in an auxin-dependent manner. This laid the foundation for a vibrant research discipline. With several active members of the 'thermomorphogenesis' community, we here reflect on 25 years of elevated ambient temperature research and look to the future.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/metabolism , Temperature , Hypocotyl/metabolism , Indoleacetic Acids
3.
Nat Commun ; 13(1): 7045, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396657

ABSTRACT

Cryptochromes (CRYs) are evolutionarily conserved photolyase-like photoreceptors found in almost all species, including mammals. CRYs regulate transcription by modulating the activity of several transcription factors, but whether and how they affect pre-mRNA processing are unknown. Photoperiod and temperature are closely associated seasonal cues that influence reproductive timing in plants. CRYs mediate photoperiod-responsive floral initiation, but it is largely unknown whether and how they are also involved in thermosensory flowering. We establish here that blue light and CRY2 play critical roles in thermosensory flowering in Arabidopsis thaliana by regulating RNA alternative splicing (AS) to affect protein expression and development. CRY2 INTERACTING SPLICING FACTOR 1 (CIS1) interacts with CRY2 in a blue light-dependent manner and promotes CRY2-mediated thermosensory flowering. Blue light, CRYs, and CISs affect transcriptome-wide AS profiles, including those of FLOWERING LOCUS M (FLM), which is critical for temperature modulation of flowering. Moreover, CIS1 binds to the FLM pre-mRNA to regulate its AS, while CRY2 regulates the RNA-binding activity of CIS1. Thus, blue light regulates thermosensory flowering via a CRY2-CIS1-FLM signaling pathway that links flowering responses to both light and ambient temperature.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Alternative Splicing , Gene Expression Regulation, Plant , Flowers , RNA Precursors/metabolism , Arabidopsis/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Cryptochromes/genetics , Cryptochromes/metabolism , MADS Domain Proteins/genetics
6.
NAR Genom Bioinform ; 3(2): lqab041, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34017946

ABSTRACT

RNA splicing, and variations in this process referred to as alternative splicing, are critical aspects of gene regulation in eukaryotes. From environmental responses in plants to being a primary link between genetic variation and disease in humans, splicing differences confer extensive phenotypic changes across diverse organisms (1-3). Regulation of splicing occurs through differential selection of splice sites in a splicing reaction, which results in variation in the abundance of isoforms and/or splicing events. However, genomic determinants that influence splice-site selection remain largely unknown. While traditional approaches for analyzing splicing rely on quantifying variant transcripts (i.e. isoforms) or splicing events (i.e. intron retention, exon skipping etc.) (4), recent approaches focus on analyzing complex/mutually exclusive splicing patterns (5-8). However, none of these approaches explicitly measure individual splice-site usage, which can provide valuable information about splice-site choice and its regulation. Here, we present a simple approach to quantify the empirical usage of individual splice sites reflecting their strength, which determines their selection in a splicing reaction. Splice-site strength/usage, as a quantitative phenotype, allows us to directly link genetic variation with usage of individual splice-sites. We demonstrate the power of this approach in defining the genomic determinants of splice-site choice through GWAS. Our pilot analysis with more than a thousand splice sites hints that sequence divergence in cis rather than trans is associated with variations in splicing among accessions of Arabidopsis thaliana. This approach allows deciphering principles of splicing and has broad implications from agriculture to medicine.

7.
Biomolecules ; 10(9)2020 09 11.
Article in English | MEDLINE | ID: mdl-32932892

ABSTRACT

Signal transduction and the regulation of gene expression are fundamental processes in every cell. RNA-binding proteins (RBPs) play a key role in the post-transcriptional modulation of gene expression in response to both internal and external stimuli. However, how signaling pathways regulate the assembly of RBPs with mRNAs remains largely unknown. Here, we summarize observations showing that the formation and composition of messenger ribonucleoprotein particles (mRNPs) is dynamically remodeled in space and time by specific signaling cascades and the resulting post-translational modifications. The integration of signaling events with gene expression is key to the rapid adaptation of cells to environmental changes and stress. Only a combined approach analyzing the signal transduction pathways and the changes in post-transcriptional gene expression they cause will unravel the mechanisms coordinating these important cellular processes.


Subject(s)
MicroRNAs/genetics , Protein Biosynthesis , Protein Processing, Post-Translational , RNA, Messenger/genetics , Ribonucleoproteins/genetics , Signal Transduction/genetics , Active Transport, Cell Nucleus , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Humans , Methylation , MicroRNAs/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , RNA Splicing , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Ribonucleoproteins/chemistry , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sumoylation
8.
Sci Rep ; 10(1): 13336, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32770129

ABSTRACT

Efficient mRNA splicing is a prerequisite for protein biosynthesis and the eukaryotic splicing machinery is evolutionarily conserved among species of various phyla. At its catalytic core resides the activated splicing complex Bact consisting of the three small nuclear ribonucleoprotein complexes (snRNPs) U2, U5 and U6 and the so-called NineTeen complex (NTC) which is important for spliceosomal activation. CWC15 is an integral part of the NTC in humans and it is associated with the NTC in other species. Here we show the ubiquitous expression and developmental importance of the Arabidopsis ortholog of yeast CWC15. CWC15 associates with core components of the Arabidopsis NTC and its loss leads to inefficient splicing. Consistent with the central role of CWC15 in RNA splicing, cwc15 mutants are embryo lethal and additionally display strong defects in the female haploid phase. Interestingly, the haploid male gametophyte or pollen in Arabidopsis, on the other hand, can cope without functional CWC15, suggesting that developing pollen might be more tolerant to CWC15-mediated defects in splicing than either embryo or female gametophyte.


Subject(s)
Arabidopsis/genetics , Spliceosomes/genetics , Pollen/genetics , RNA Splicing/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
10.
Proc Natl Acad Sci U S A ; 116(50): 25343-25354, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31767749

ABSTRACT

Many plant species respond to unfavorable high ambient temperatures by adjusting their vegetative body plan to facilitate cooling. This process is known as thermomorphogenesis and is induced by the phytohormone auxin. Here, we demonstrate that the chromatin-modifying enzyme HISTONE DEACETYLASE 9 (HDA9) mediates thermomorphogenesis but does not interfere with hypocotyl elongation during shade avoidance. HDA9 is stabilized in response to high temperature and mediates histone deacetylation at the YUCCA8 locus, a rate-limiting enzyme in auxin biosynthesis, at warm temperatures. We show that HDA9 permits net eviction of the H2A.Z histone variant from nucleosomes associated with YUCCA8, allowing binding and transcriptional activation by PHYTOCHROME INTERACTING FACTOR 4, followed by auxin accumulation and thermomorphogenesis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Histone Deacetylases/metabolism , Histones/metabolism , Indoleacetic Acids/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant , Histone Deacetylases/genetics , Histones/genetics , Hot Temperature , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Protein Binding
11.
BMC Genomics ; 20(1): 636, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31387521

ABSTRACT

BACKGROUND: Transition to flowering at the right time is critical for local adaptation and to maximize grain yield in crops. Canola is an important oilseed crop with extensive variation in flowering time among varieties. However, our understanding of underlying genes and their role in canola productivity is limited. RESULTS: We report our analyses of a diverse GWAS panel (300-368 accessions) of canola and identify SNPs that are significantly associated with variation in flowering time and response to photoperiod across multiple locations. We show that several of these associations map in the vicinity of FLOWERING LOCUS T (FT) paralogs and its known transcriptional regulators. Complementary QTL and eQTL mapping studies, conducted in an Australian doubled haploid population, also detected consistent genomic regions close to the FT paralogs associated with flowering time and yield-related traits. FT sequences vary between accessions. Expression levels of FT in plants grown in field (or under controlled environment cabinets) correlated with flowering time. We show that markers linked to the FT paralogs display association with variation in multiple traits including flowering time, plant emergence, shoot biomass and grain yield. CONCLUSIONS: Our findings suggest that FT paralogs not only control flowering time but also modulate yield-related productivity traits in canola.


Subject(s)
Brassica napus/growth & development , Brassica napus/genetics , Flowers/growth & development , Genome-Wide Association Study , Plant Proteins/genetics , Plant Proteins/metabolism , Genotype , Phenotype , Photoperiod , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , Quantitative Trait Loci/genetics , Sequence Homology, Nucleic Acid
12.
Plant Cell ; 31(6): 1222-1237, 2019 06.
Article in English | MEDLINE | ID: mdl-30992321

ABSTRACT

Understanding how plants adapt to ambient temperatures has become a major challenge prompted by global climate change. This has led to the identification of several genes regulating the thermal plasticity of plant growth and flowering time. However, the mechanisms accounting for the natural variation and evolution of such developmental plasticity remain mostly unknown. In this study, we determined that natural variation at ICARUS2 (ICA2), which interacts genetically with its homolog ICA1, alters growth and flowering time plasticity in relation to temperature in Arabidopsis (Arabidopsis thaliana). Transgenic analyses demonstrated multiple functional effects for ICA2 and supported the notion that structural polymorphisms in ICA2 likely underlie its natural variation. Two major ICA2 haplogroups carrying distinct functionally active alleles showed high frequency, strong geographic structure, and significant associations with climatic variables related to annual and daily fluctuations in temperature. Genome analyses across the plant phylogeny indicated that the prevalent plant ICA genes encoding two tRNAHis guanylyl transferase 1 units evolved ∼120 million years ago during the early divergence of mono- and dicotyledonous clades. In addition, ICA1/ICA2 duplication occurred specifically in the Camelineae tribe (Brassicaceae). Thus, ICA2 appears to be ubiquitous across plant evolution and likely contributes to climate adaptation through modifications of thermal developmental plasticity in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Nucleotidyltransferases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Evolution, Molecular , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Nucleotidyltransferases/genetics , Temperature
13.
Proc Natl Acad Sci U S A ; 116(14): 6908-6913, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30877258

ABSTRACT

Rapid phenotypic changes in traits of adaptive significance are crucial for organisms to thrive in changing environments. How such phenotypic variation is achieved rapidly, despite limited genetic variation in species that experience a genetic bottleneck is unknown. Capsella rubella, an annual and inbreeding forb (Brassicaceae), is a great system for studying this basic question. Its distribution is wider than those of its congeneric species, despite an extreme genetic bottleneck event that severely diminished its genetic variation. Here, we demonstrate that transposable elements (TEs) are an important source of genetic variation that could account for its high phenotypic diversity. TEs are (i) highly enriched in C. rubella compared with its outcrossing sister species Capsella grandiflora, and (ii) 4.2% of polymorphic TEs in C. rubella are associated with variation in the expression levels of their adjacent genes. Furthermore, we show that frequent TE insertions at FLOWERING LOCUS C (FLC) in natural populations of C. rubella could explain 12.5% of the natural variation in flowering time, a key life history trait correlated with fitness and adaptation. In particular, we show that a recent TE insertion at the 3' UTR of FLC affects mRNA stability, which results in reducing its steady-state expression levels, to promote the onset of flowering. Our results highlight that TE insertions can drive rapid phenotypic variation, which could potentially help with adaptation to changing environments in a species with limited standing genetic variation.


Subject(s)
Adaptation, Physiological , Capsella , DNA Transposable Elements , Genetic Loci , Genetic Variation , Phenotype , Capsella/genetics , Capsella/metabolism , MADS Domain Proteins/biosynthesis , MADS Domain Proteins/genetics , Plant Proteins/biosynthesis , Plant Proteins/genetics , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism
14.
Annu Rev Plant Biol ; 70: 321-346, 2019 04 29.
Article in English | MEDLINE | ID: mdl-30786235

ABSTRACT

When exposed to warmer, nonstressful average temperatures, some plant organs grow and develop at a faster rate without affecting their final dimensions. Other plant organs show specific changes in morphology or development in a response termed thermomorphogenesis. Selected coding and noncoding RNA, chromatin features, alternative splicing variants, and signaling proteins change their abundance, localization, and/or intrinsic activity to mediate thermomorphogenesis. Temperature, light, and circadian clock cues are integrated to impinge on the level or signaling of hormones such as auxin, brassinosteroids, and gibberellins. The light receptor phytochrome B (phyB) is a temperature sensor, and the phyB-PHYTOCHROME-INTERACTING FACTOR 4 (PIF4)-auxin module is only one thread in a complex network that governs temperature sensitivity. Thermomorphogenesis offers an avenue to search for climate-smart plants to sustain crop and pasture productivity in the context of global climate change.


Subject(s)
Circadian Clocks , Plant Proteins , Basic Helix-Loop-Helix Transcription Factors , Gene Expression Regulation, Plant , Light , Phytochrome B , Plant Physiological Phenomena , Plants
15.
Cell ; 174(5): 1095-1105.e11, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30057112

ABSTRACT

Transcriptional downregulation caused by intronic triplet repeat expansions underlies diseases such as Friedreich's ataxia. This downregulation of gene expression is coupled with epigenetic changes, but the underlying mechanisms are unknown. Here, we show that an intronic GAA/TTC triplet expansion within the IIL1 gene of Arabidopsis thaliana results in accumulation of 24-nt short interfering RNAs (siRNAs) and repressive histone marks at the IIL1 locus, which in turn causes its transcriptional downregulation and an associated phenotype. Knocking down DICER LIKE-3 (DCL3), which produces 24-nt siRNAs, suppressed transcriptional downregulation of IIL1 and the triplet expansion-associated phenotype. Furthermore, knocking down additional components of the RNA-dependent DNA methylation (RdDM) pathway also suppressed both transcriptional downregulation of IIL1 and the repeat expansion-associated phenotype. Thus, our results show that triplet repeat expansions can lead to local siRNA biogenesis, which in turn downregulates transcription through an RdDM-dependent epigenetic modification.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Epigenesis, Genetic , Introns , RNA, Plant/genetics , RNA, Small Interfering/genetics , Ribonuclease III/genetics , Transcription, Genetic , DNA Methylation , DNA Polymerase beta/genetics , Down-Regulation , Gene Expression Regulation, Plant , Genes, Plant , Oligonucleotides, Antisense/genetics , Phenotype , RNA Interference , Transgenes , Trinucleotide Repeat Expansion
16.
Plant Cell ; 30(6): 1322-1336, 2018 06.
Article in English | MEDLINE | ID: mdl-29764984

ABSTRACT

Flowering time is an adaptive life history trait. Capsella rubella, a close relative of Arabidopsis thaliana and a young species, displays extensive variation for flowering time but low standing genetic variation due to an extreme bottleneck event, providing an excellent opportunity to understand how phenotypic diversity can occur with a limited initial gene pool. Here, we demonstrate that common allelic variation and parallel evolution at the FLC locus confer variation in flowering time in C. rubella. We show that two overlapping deletions in the 5' untranslated region (UTR) of C. rubella FLC, which are associated with local changes in chromatin conformation and histone modifications, reduce its expression levels and promote flowering. We further show that these two pervasive variants originated independently in natural C. rubella populations after speciation and spread to an intermediate frequency, suggesting a role of this parallel cis-regulatory change in adaptive evolution. Our results provide an example of how parallel mutations in the same 5' UTR region can shape phenotypic evolution in plants.


Subject(s)
Capsella/genetics , Capsella/physiology , Flowers/genetics , Flowers/physiology , Alleles , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology
17.
PLoS Genet ; 14(3): e1007280, 2018 03.
Article in English | MEDLINE | ID: mdl-29547672

ABSTRACT

Ambient temperature affects plant growth and even minor changes can substantially impact crop yields. The underlying mechanisms of temperature perception and response are just beginning to emerge. Chromatin remodeling, via the eviction of the histone variant H2A.Z containing nucleosomes, is a critical component of thermal response in plants. However, the role of histone modifications remains unknown. Here, through a forward genetic screen, we identify POWERDRESS (PWR), a SANT-domain containing protein known to interact with HISTONE DEACETYLASE 9 (HDA9), as a novel factor required for thermomorphogenesis in Arabidopsis thaliana. We show that mutations in PWR impede thermomorphogenesis, exemplified by attenuated warm temperature-induced hypocotyl/petiole elongation and early flowering. We show that inhibitors of histone deacetylases diminish temperature-induced hypocotyl elongation, which demonstrates a requirement for histone deacetylation in thermomorphogenesis. We also show that elevated temperature is associated with deacetylation of H3K9 at the +1 nucleosomes of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and YUCCA8 (YUC8), and that PWR is required for this response. There is global misregulation of genes in pwr mutants at elevated temperatures. Meta-analysis revealed that genes that are misregulated in pwr mutants display a significant overlap with genes that are H2A.Z-enriched in their gene bodies, and with genes that are differentially expressed in mutants of the components of the SWR1 complex that deposits H2A.Z. Our findings thus uncover a role for PWR in facilitating thermomorphogenesis and suggest a potential link between histone deacetylation and H2A.Z nucleosome dynamics in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Histones/metabolism , Transcription Factors/metabolism , Acetylation , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Histone Deacetylases/metabolism , Morphogenesis , Mutation , Temperature , Transcription Factors/genetics
18.
Front Plant Sci ; 7: 1311, 2016.
Article in English | MEDLINE | ID: mdl-27630650

ABSTRACT

Triplet repeat expansions underlie several human genetic diseases such as Huntington's disease and Friedreich's ataxia. Although such mutations are primarily known from humans, a triplet expansion associated genetic defect has also been reported at the IIL1 locus in the Bur-0 accession of the model plant Arabidopsis thaliana. The IIL1 triplet expansion is an example of cryptic genetic variation as its phenotypic effects are seen only under genetic or environmental perturbation, with high temperatures resulting in a growth defect. Here we demonstrate that the IIL1 triplet expansion associated growth defect is not a general stress response and is specific to particular environmental perturbations. We also confirm and map genetic modifiers that suppress the effect of IIL1 triplet repeat expansion. By collecting and analyzing accessions from the island of Ireland, we recover the repeat expansion in wild populations suggesting that the repeat expansion has persisted at least 60 years in Ireland. Through genome-wide genotyping, we show that the repeat expansion is present in diverse Irish populations. Our findings indicate that even deleterious alleles can persist in populations if their effect is conditional. Our study demonstrates that analysis of groups of wild populations is a powerful tool for understanding the dynamics of cryptic genetic variation.

19.
Nat Plants ; 2(5): 16055, 2016 04 29.
Article in English | MEDLINE | ID: mdl-27243649

ABSTRACT

Increasing global temperatures have an impact on flowering, and the underlying mechanisms are just beginning to be unravelled(1,2). Elevated temperatures can induce flowering, and different mechanisms that involve either activation or de-repression of FLOWERING LOCUS T (FT) by transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) or the FLOWERING LOCUS M (FLM)-SHORT VEGETATIVE PHASE (SVP) complex, respectively, have been suggested to be involved(3-6). Thermosensitivity in flowering has been mapped to FLM(5), which encodes a floral repressor(7,8). FLM undergoes alternative splicing(8) and it has been suggested that temperature-dependent alternative splicing leads to differential accumulation of the FLM-ß and FLM-δ transcripts, encoding proteins with antagonistic effects, and that their ratio determines floral transition(4). Here we show that high temperatures downregulate FLM expression by alternative splicing coupled with nonsense-mediated mRNA decay (AS-NMD). We identify thermosensitive splice sites in FLM and show that the primary effect of temperature is explained by an increase in NMD target transcripts. We also show that flm is epistatic to pif4, which suggests that most of the PIF4 effects are FLM dependent. Our findings suggest a model in which the loss of the floral repressor FLM occurs through mRNA degradation in response to elevated temperatures, signifying a role for AS-NMD in conferring environmental responses in plants.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Arabidopsis/genetics , Flowers/growth & development , MADS Domain Proteins/genetics , Nonsense Mediated mRNA Decay , RNA, Plant/genetics , Alternative Splicing , Arabidopsis Proteins/metabolism , Down-Regulation , Flowers/genetics , Flowers/metabolism , Hot Temperature , MADS Domain Proteins/metabolism , RNA, Plant/metabolism
20.
Front Neurosci ; 10: 92, 2016.
Article in English | MEDLINE | ID: mdl-27013954

ABSTRACT

More than 30 human genetic diseases are linked to tri-nucleotide repeat expansions. There is no known mechanism that explains repeat expansions in full, but changes in the epigenetic state of the associated locus has been implicated in the disease pathology for a growing number of examples. A comprehensive comparative analysis of the genomic features associated with diverse repeat expansions has been lacking. Here, in an effort to decipher the propensity of repeats to undergo expansion and result in a disease state, we determine the genomic coordinates of tri-nucleotide repeat tracts at base pair resolution and computationally establish epigenetic profiles around them. Using three complementary statistical tests, we reveal that several epigenetic states are enriched around repeats that are associated with disease, even in cells that do not harbor expansion, relative to a carefully stratified background. Analysis of over one hundred cell types reveals that epigenetic states generally tend to vary widely between genic regions and cell types. However, there is qualified consistency in the epigenetic signatures of repeats associated with disease suggesting that changes to the chromatin and the DNA around an expanding repeat locus are likely to be similar. These epigenetic signatures may be exploited further to develop models that could explain the propensity of repeats to undergo expansions.

SELECTION OF CITATIONS
SEARCH DETAIL
...