Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Imaging Biol ; 8(5): 262-77, 2006.
Article in English | MEDLINE | ID: mdl-16897320

ABSTRACT

Positron emission tomography (PET) with epidermal growth factor receptor (EGFR) kinase-specific radiolabeled tracers could provide the means for noninvasive and repetitive imaging of heterogeneity of EGFR expression and signaling activity in tumors in individual patients before and during therapy with EGFR signaling inhibitors. We developed the synthesis and (124)I-radiolabeling of the (E)-But-2-enedioic acid [4-(3-[(124)I]iodoanilino)-quinazolin-6-yl]-amide-(3-morpholin-4-yl-propyl)-amide (morpholino-[(124)I]-IPQA), which selectively, irreversibly, and covalently binds the adenosine-triphosphate-binding site to the activated (phosphorylated) EGFR kinase, but not to the inactive EGFR kinase. The latter was demonstrated using in silico modeling with crystal structures of the wild type and different gain-of-function mutants of EGFR kinases. Also, this was demonstrated by selective radiolabeling of the EGFR kinase domain with morpholino-[(131)I]-IPQA in A431 human epidermoid carcinoma cells and Western blot autoradiography. In vitro radiotracer accumulation and washout studies demonstrated a rapid accumulation and progressive retention postwashout of morpholino-[(131)I]-IPQA in A431 epidermoid carcinoma and in U87 human glioma cells genetically modified to express the EGFRvIII mutant receptor, but not in the wild-type U87MG glioma cells under serum-starved conditions. Using morpholino-[(124)I]-IPQA, we obtained noninvasive PET images of EGFR activity in A431 subcutaneous tumor xenografts, but not in subcutaneous tumor xenografts grown from K562 human chronic myeloid leukemia cells in immunocompromised rats and mice. Based on these observations, we suggest that PET imaging with morpholino-[(124)I]-IPQA should allow for identification of tumors with high EGFR kinase signaling activity, including brain tumors expressing EGFRvIII mutants and nonsmall-cell lung cancer expressing gain-of-function EGFR kinase mutants. Because of significant hepatobiliary clearance and intestinal reuptake of the morpholino-[(124)I]-IPQA, additional [(124)I]-IPQA derivatives with improved water solubility may be required to optimize the pharmacokinetics of this class of molecular imaging agents.


Subject(s)
ErbB Receptors/analysis , Iodine Radioisotopes , Neoplasms/diagnostic imaging , Neoplasms/enzymology , Positron-Emission Tomography/methods , Animals , Brain Neoplasms/diagnosis , Carcinoma, Non-Small-Cell Lung/diagnosis , Humans , Inhibitory Concentration 50 , Iodine Radioisotopes/chemistry , Iodine Radioisotopes/pharmacokinetics , K562 Cells , Mice , Mice, Nude , Models, Biological , Models, Molecular , Phosphorylation , Protein Kinase Inhibitors/analysis , Protein-Tyrosine Kinases/analysis , Protein-Tyrosine Kinases/antagonists & inhibitors , Radioactive Tracers , Radionuclide Imaging/methods , Rats , Sensitivity and Specificity , Staining and Labeling , Tissue Distribution , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Gene Ther ; 9(3): 168-75, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11859419

ABSTRACT

Transcriptional targeting of gene expression has been plagued by the weakness of tissue-specific promoters. Thus, to increase promoter strength while maintaining tissue specificity, we constructed a recombinant adenovirus containing a binary promoter system with a tumor-specific promoter (CEA; carcinoembryonic antigen) driving a transcription transactivator, which then activates a minimal promoter to express a suicide gene (HSV-tk; herpes simplex virus thymidine kinase). This ADV/binary-tk induced equal or greater cell killing in a CEA-specific manner in vitro compared with the CEA-independent killing of a vector with a constitutive viral promoter driving HSV-tk (ADV/RSV-tk). To monitor adenovirus-mediated HSV-tk gene expression in vivo, we employed noninvasive nuclear imaging using a radioiodinated nucleoside analog ([((1)31)I]-FIAU) serving as a substrate for HSV-tk. [((1)31)I]-FIAU-derived radioactivity accumulated after intratumoral injection of ADV/binary-tk only in the area of CEA-positive tumors with significantly less spread to the adjacent liver tissue than after administration of the universally expressed ADV/RSV-tk. Both viruses exhibited similar antitumor efficacy upon injection of liver metastases. Importantly, in vivo dose escalation studies demonstrated significantly reduced toxicity after intravenous administration of ADV/binary-tk versus ADV/RSV-tk. In summary, the increased therapeutic index of this novel, amplified CEA-driven suicide gene therapy vector is a proof of principle for the powerful enhancement of a weak tissue-specific promoter for effective tumor restricted gene expression.


Subject(s)
Breast Neoplasms/therapy , Carcinoembryonic Antigen/genetics , Gene Targeting/methods , Genetic Therapy/methods , Transcription, Genetic , Adenoviridae/genetics , Animals , Gene Expression , Genetic Vectors/administration & dosage , HeLa Cells , Herpes Simplex Virus Protein Vmw65/genetics , Humans , Injections, Intralesional , Liver Neoplasms/secondary , Liver Neoplasms/therapy , Mice , Mice, Inbred BALB C , Promoter Regions, Genetic , Retroviruses, Simian/enzymology , Simplexvirus/enzymology , Thymidine Kinase/genetics , Tumor Cells, Cultured
3.
Proc Natl Acad Sci U S A ; 98(16): 9300-5, 2001 Jul 31.
Article in English | MEDLINE | ID: mdl-11481488

ABSTRACT

A noninvasive method for molecular imaging of the activity of different signal transduction pathways and the expression of different genes in vivo would be of considerable value. It would aid in understanding the role specific genes and signal transduction pathways have in various diseases, and could elucidate temporal dynamics and regulation at different stages of disease and during various therapeutic interventions. We developed and assessed a method for monitoring the transcriptional activation of endogenous genes by positron-emission tomography (PET) imaging. The HSV1-tk/GFP (TKGFP) dual reporter gene was used to monitor transcriptional activation of p53-dependent genes. A retrovirus bearing the Cis-p53/TKGFP reporter system was constructed in which the TKGFP reporter gene was placed under control of an artificial cis-acting p53-specific enhancer. U87 glioma and SaOS-2 osteosarcoma cells were transduced with this retrovirus and used to establish xenografts in rats. We demonstrated that DNA damage-induced up-regulation of p53 transcriptional activity correlated with the expression of p53-dependent downstream genes, such as p21, in U87 (wild-type p53), but not in SaOS-2 osteosarcoma (p53 -/-) cells. We showed that PET, with [(124)I]FIAU (2'-fluoro-2'-deoxy-1-beta-d-arabinofuranosyl-5-[(124)I]iodouracil) and the Cis-p53TKGFP reporter system, is sufficiently sensitive to image the transcriptional regulation of genes in the p53 signal transduction pathway. These imaging results were confirmed by independent measurements of p53 activity and the expression levels of downstream genes (e.g., p21) by using conventional molecular-biological assays. PET imaging of p53 transcriptional activity in tumor xenografts by using the Cis-p53TKGFP reporter system may be useful in assessing novel therapeutic approaches.


Subject(s)
Gene Expression Regulation , Transcription, Genetic , Tumor Suppressor Protein p53/physiology , Animals , Base Sequence , DNA Primers , Tomography, Emission-Computed , Tumor Cells, Cultured
4.
Nat Med ; 7(7): 859-63, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11433353

ABSTRACT

Molecular therapy using viruses would benefit greatly from a non-invasive modality for assessing dissemination of viruses. Here we investigated whether positron emission tomography (PET) scanning using [(124)I]-5-iodo-2'-fluoro-1-beta-d-arabinofuranosyl-uracil (FIAU) could image cells infected with herpes simplex viruses (HSV). Using replication-competent HSV-1 oncolytic viruses with thymidine kinase (TK) under control of different promoters, we demonstrate that viral infection, proliferation and promoter characteristics all interact to influence FIAU accumulation and imaging. In vivo, as few as 1 x 107 viral particles injected into a 0.5-cm human colorectal tumor can be detected by [(124)I]FIAU PET imaging. PET signal intensity is significantly greater at 48 hours compared with that at 8 hours after viral injection, demonstrating that PET scanning can detect changes in TK activity resulting from local viral proliferation. We also show the ability of FIAU-PET scanning to detect differences in viral infectivity at 0.5 log increments. Non-invasive imaging might be useful in assessing biologically relevant distribution of virus in therapies using replication-competent HSV.


Subject(s)
Arabinofuranosyluracil/analogs & derivatives , Biological Therapy , Herpesvirus 1, Human/physiology , Neoplasms/therapy , Antiviral Agents/therapeutic use , Arabinofuranosyluracil/therapeutic use , Autoradiography , Humans , Promoter Regions, Genetic , Thymidine Kinase/genetics , Tomography, Emission-Computed , Tumor Cells, Cultured , Virus Replication
5.
Cancer Res ; 61(7): 2983-95, 2001 Apr 01.
Article in English | MEDLINE | ID: mdl-11306477

ABSTRACT

To evaluate the efficiency of gene delivery in gene therapy strategies for malignant brain tumors, it is important to determine the distribution and magnitude of transgene expression in target tumor cells over time. Here, we assess the time- and vector dose-dependent kinetics of recombinant herpes simplex virus (HSV)-1 vector-mediated gene expression and vector replication in culture and in vivo by a recently developed radiotracer method for noninvasive imaging of gene expression (J. G. Tjuvajev et al., Cancer Res., 55: 6126-6132, 1995). The kinetics of viral infection of rat 9L gliosarcoma cells by the replication-conditional HSV-1 vector, hrR3, was studied by measuring the accumulation rate of 2-[14C]-fluoro-5-iodo-1-beta-D-arabinofuranosyl-uracil (FIAU), a selective substrate for viral thymidine kinase (TK). The level of viral TK activity in 9L cells was monitored by the radiotracer assay to assess various vector doses and infection times, allowing vector replication and spread. In parallel, viral yields and levels of Escherichia coli beta-galactosidase activity were assessed quantitatively. To study vector replication, spread and HSV-1-tk and lacZ gene coexpression in vivo, first- or second-generation recombinant HSV-1 vectors (hrR3 or MGH-1) were injected into s.c. growing rat 9L or human U87 deltaEGFR gliomas in nude rats at various times (8 h to 8 days) and at various vector doses [1 x 10(6) to 2 x 10(9) plaque-forming units (PFUs)] prior to imaging. For noninvasive assessment of HSV-1-tk gene expression (124I-labeled FIAU % dose/g), 0.15 mCi of 124I-labeled FIAU was injected i.v. 8 h after the last vector administration, and FIAU positron emission tomography (PET) was performed 48 h later. For the assessment of HSV-1-tk and lacZ gene coexpression, 0.2 mCi of 131I-labeled FIAU was injected i.v. 24 h after the last vector administration. Forty-eight h later, animals were killed, and tumors were dissected for quantitative autoradiographical and histochemical assessment of regional distribution of radioactivity (TK expression measured as 131I-labeled FIAU % dose/g) and coexpressed lacZ gene activity. The rates of FIAU accumulation (Ki) in hrR3-infected 9L cells in culture, which reflect the levels of HSV-1-tk gene expression, ranged between 0.12 and 3.4 ml/g/min. They increased in a vector dose- and infection time-dependent manner and correlated with the virus yield (PFUs/ml), where the PFUs:Ki ratios remained relatively constant over time. Moreover, a linear relationship was observed between lacZ gene expression and FIAU accumulation 5-40 h after infection of 9L cells with a multiplicity of infection of 1.5. At later times (> 52 h postinjection), high vector doses (multiplicity of infection, 1.5) led to a decrease of FIAU accumulation rates, viral yield, and cell pellet weights, indicating vector-mediated cell toxicity. Various levels of HSV-1-tk gene expression could be assessed by FIAU-PET after in vivo infection of s.c. tumors. The levels of FIAU accumulation were comparatively low (approximately ranging from 0.00013 to 0.003% injected dose/g) and were spatially localized; this may reflect viral-induced cytolysis of infected tumor cells and limited lateral spread of the virus. Image coregistration of tumor histology, HSV-1-tk related radioactivity (assessed by autoradiography), and lacZ gene expression (assessed by beta-galactosidase staining) demonstrated a characteristic pattern of gene expression around the injection sites. A rim of lacZ gene expression immediately adjacent to necrotic tumor areas was observed, and this zone was surrounded by a narrow band of HSV-1-tk-related radioactivity, primarily in viable-appearing tumor tissue. These results demonstrate that recombinant HSV-1 vector-mediated HSV-1-tk gene expression can be monitored noninvasively by PET, where the areas of FIAU-derived radioactivity identify the viable portion of infected tumor tissue that retains FIAU accumulation ability, and that the accumulation rate of FIAU in culture, Ki, reflects the number of HSV-1 viral particles in the infected tumor cell population [4.1 +/- 0.6 x 10(6) PFUs/Ki unit (PFUs divided by ml/min/g)]. Moreover, time-dependent and spatial relationships of HSV-1-tk and lacZ gene coexpression in culture and in vivo indicate the potential for indirect in vivo imaging of therapeutic gene expression in tumor tissue infected with any recombinant HSV-1 vector where a therapeutic gene is substituted for the lacZ gene.


Subject(s)
Arabinofuranosyluracil/analogs & derivatives , Gene Expression Regulation, Viral , Herpesvirus 1, Human/physiology , Transgenes , Animals , Arabinofuranosyluracil/pharmacokinetics , Autoradiography , Chlorocebus aethiops , Genetic Vectors/genetics , Genetic Vectors/metabolism , Glioma/genetics , Gliosarcoma/genetics , Herpesvirus 1, Human/genetics , Humans , Iodine Radioisotopes , Lac Operon/genetics , Mice , Mice, Nude , Mutation , Rats , Thymidine Kinase/biosynthesis , Thymidine Kinase/genetics , Tomography, Emission-Computed , Vero Cells , Virus Replication
6.
Neoplasia ; 3(6): 480-8, 2001.
Article in English | MEDLINE | ID: mdl-11774030

ABSTRACT

A noninvasive method for molecular imaging of T-cell activity in vivo would be of considerable value. It would aid in understanding the role of specific genes and signal transduction pathways in the course of normal and pathologic immune responses, and could elucidate temporal dynamics and immune regulation at different stages of disease and following therapy. We developed and assessed a novel method for monitoring the T-cell receptor (TCR)-dependent nuclear factor of activated T cells (NFAT)-mediated activation of T cells by optical fluorescence imaging (OFI) and positron emission tomography (PET). The herpes simplex virus type 1 thymidine kinase/green fluorescent protein [HSV1-tk/GFP (TKGFP)] dual reporter gene was used to monitor NFAT-mediated transcriptional activation in human Jurkat cells. A recombinant retrovirus bearing the NFAT-TKGFP reporter system was constructed in which the TKGFP reporter gene was placed under control of an artificial cis-acting NFAT-specific enhancer. Transduced Jurkat cells were used to establish subcutaneous infiltrates in nude rats. We demonstrated that noninvasive OFI and nuclear imaging of T-cell activation is feasible using the NFAT-TKGFP reporter system. PET imaging with [(124)I]FIAU using the NFAT-TKGFP reporter system is sufficiently sensitive to detect T-cell activation in vivo. PET images were confirmed by independent measurements of T-cell activation (e.g., CD69) and induction of GFP fluorescence. PET imaging of TCR-induced NFAT-dependent transcriptional activity may be useful in the assessment of T cell responses, T-cell-based adoptive therapies, vaccination strategies and immunosuppressive drugs.


Subject(s)
DNA-Binding Proteins/physiology , Genes, Reporter , Jurkat Cells/immunology , Luminescent Proteins/analysis , Lymphocyte Activation/physiology , Nuclear Proteins , Receptors, Antigen, T-Cell/immunology , Thymidine Kinase/analysis , Tomography, Emission-Computed , Transcription Factors/physiology , Transcription, Genetic , Animals , Enhancer Elements, Genetic , Feasibility Studies , Flow Cytometry , Fluorometry , Green Fluorescent Proteins , Humans , Injections, Subcutaneous , Interleukin-2/biosynthesis , Interleukin-2/genetics , Jurkat Cells/metabolism , Jurkat Cells/transplantation , Luminescent Proteins/biosynthesis , Luminescent Proteins/genetics , Lymphocyte Activation/genetics , Mice , NFATC Transcription Factors , Neoplasm Proteins/immunology , Promoter Regions, Genetic/genetics , Rats , Rats, Nude , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Sensitivity and Specificity , Signal Transduction , Thymidine Kinase/biosynthesis , Thymidine Kinase/genetics , Transfection
7.
Neoplasia ; 2(1-2): 118-38, 2000.
Article in English | MEDLINE | ID: mdl-10933072

ABSTRACT

A variety of imaging technologies are being investigated as tools for studying gene expression in living subjects. Noninvasive, repetitive and quantitative imaging of gene expression will help both to facilitate human gene therapy trials and to allow for the study of animal models of molecular and cellular therapy. Radionuclide approaches using single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the most mature of the current imaging technologies and offer many advantages for imaging gene expression compared to optical and magnetic resonance imaging (MRI)-based approaches. These advantages include relatively high sensitivity, full quantitative capability (for PET), and the ability to extend small animal assays directly into clinical human applications. We describe a PET scanner (microPET) designed specifically for studies of small animals. We review "marker/reporter gene" imaging approaches using the herpes simplex type 1 virus thymidine kinase (HSV1-tk) and the dopamine type 2 receptor (D2R) genes. We describe and contrast several radiolabeled probes that can be used with the HSV1-tk reporter gene both for SPECT and for PET imaging. We also describe the advantages/disadvantages of each of the assays developed and discuss future animal and human applications.


Subject(s)
Radionuclide Imaging/instrumentation , Radionuclide Imaging/methods , Transgenes/genetics , Animals , Gene Expression , Herpesvirus 1, Human/enzymology , Humans , Mice , Models, Biological , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/genetics , Thymidine Kinase/chemistry , Thymidine Kinase/genetics , Tomography, Emission-Computed/methods
8.
Cancer Res ; 59(20): 5186-93, 1999 Oct 15.
Article in English | MEDLINE | ID: mdl-10537296

ABSTRACT

The feasibility of noninvasive imaging of adenoviral-mediated herpes virus type one thymidine kinase (HSV1-tk) gene transfer and expression was assessed in a well-studied animal model of metastatic colon carcinoma of the liver. Tumors were produced in syngeneic BALB/c mice by intrahepatic injection of colon carcinoma cells (MCA-26). Seven days later, three different doses (3 x 10(8), 1 x 10(8), and 3 x 10(7) plaque-forming units (pfu) of the recombinant adenoviral vector ADV. Rous sarcoma virus (RSV)-tk bearing the HSV1-tk gene were administered by intratumoral injection in separate groups of mice. Two control groups of tumor-bearing mice received intratumoral injections of the control adenoviral vector dl-312 or buffer alone, respectively. T2-weighted magnetic resonance (MR) images of mice were obtained before administering the virus and provided an anatomical reference of hepatic tumor localization. Eighteen h after the virus injection, one group of animals was given i.v. injections of 300 microCi of no-carrier-added 5-[131I]-2'-fluoro-1-beta-D-arabinofuranosyluracil (FIAU) and imaged 24 h later with a gamma camera. In some animals, the tumors were sampled and processed for histology and quantitative autoradiography (QAR). The gamma camera images demonstrated highly specific localization of [131I]FIAU-derived radioactivity to the area of ADV.RSV-tk-injected tumors in the liver, which was confirmed by coregistering the gamma camera and T2-weighted MR images. There was no accumulation of [131I]FIAU-derived radioactivity in tumors that were injected with the control vector or injection solution alone. A more precise distribution of radioactivity in the area of transfected tumor was obtained by histological and QAR comparisons. A heterogeneous pattern of radioactivity distribution in transfected tumors was observed. A punctate pattern of radioactivity distribution was observed in peritumoral liver tissue in animals given injections of 3 x 10(8) and 1 x 10(8) pfu of ADV.RSV-tk but not in animals given injections of 3 x 10(7) pfu nor in control animals. A QAR-microscopic comparison showed that the punctate areas of radioactivity colocalized with cholangial ducts. The level of [131I]FIAU-derived radioactivity accumulation (HSV1-tk expression) in the transfected tumors was viral dose-dependent. The viral dose-dependency of radioactivity accumulation was more pronounced in peritumoral liver, which was confirmed by reverse transcription-PCR analysis. A separate group of tumor-bearing animals received different doses of ADV.RSV-tk vector followed by treatment with ganciclovir (GCV), 10 mg/kg i.p. b.i.d. for 6 days. The ADV.RSV-tk transfected tumors significantly regressed with GCV treatment; the control tumors continued to grow. During the GCV treatment, the levels of liver transaminases (ALT and AST) were significantly increased in animals that received injections of 3 x 10(8) and 1 x 10(8) pfu of ADV.RSV-tk but not in animals that received injections of 3 x 10(7) pfu and in control animals. The observed liver toxicity confirms the results of gamma camera and QAR imaging, which demonstrated an unwanted spread of ADV.RSV-tk vector and HSV1-tk expression in peritumoral and remote liver tissue at higher doses. These and our previous results indicate that noninvasive imaging of adenoviral-mediated HSV1-tk gene expression is feasible for monitoring cancer gene therapy in patients.


Subject(s)
Adenoviridae/genetics , Colonic Neoplasms/therapy , Gene Transfer Techniques , Genetic Therapy , Simplexvirus/enzymology , Thymidine Kinase/genetics , Animals , Arabinofuranosyluracil/analogs & derivatives , Autoradiography , Ganciclovir/therapeutic use , Gene Expression , Iodine Radioisotopes , Magnetic Resonance Imaging , Mice , Mice, Inbred BALB C , Tumor Cells, Cultured
9.
Neoplasia ; 1(4): 315-20, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10935486

ABSTRACT

Non-invasive imaging of gene expression opens new prospects for the study of transgenic animals and the implementation of genetically based therapies in patients. We have sought to establish a general paradigm to enable whole body non-invasive imaging of any transgene. We show that the expression and imaging of HSV1-tk (a marker gene) can be used to monitor the expression of the LacZ gene (a second gene) under the transcriptional control of a single promoter within a bicistronic unit that includes a type II internal ribosomal entry site. In cells bearing a single copy of the vector, the expression of the two genes is proportional and constant, both in vitro and in vivo. We demonstrate that non-invasive imaging of HSV1-tk gene accurately reflects the topology and activity of the other cis-linked transgene.


Subject(s)
Diagnostic Imaging/methods , Simplexvirus/enzymology , Thymidine Kinase/genetics , Transgenes , Animals , Blotting, Southern , Escherichia coli/enzymology , Gamma Rays , Genetic Therapy/methods , Genetic Vectors , Lac Operon/genetics , Neoplasm Transplantation , Promoter Regions, Genetic , Rats , Rats, Sprague-Dawley , Retroviridae/genetics , Transcription, Genetic , Transduction, Genetic , Tumor Cells, Cultured , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...