Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 125(49): 13366-13375, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34870419

ABSTRACT

Glutaredoxins are small proteins that share a common well-conserved thioredoxin-fold and participate in a wide variety of biological processes. Among them, class II Grx are redox-inactive proteins involved in iron-sulfur (Fe-S) metabolism. In the present work, we report different structural and dynamics aspects of 1CGrx1 from the pathogenic parasite Trypanosoma brucei that differentiate it from other orthologues by the presence of a parasite-specific unstructured N-terminal extension whose role has not been fully elucidated yet. Previous nuclear magnetic resonance (NMR) studies revealed significant differences with respect to the mutant lacking the disordered tail. Herein, we have performed atomistic molecular dynamics simulations that, complementary to NMR studies, confirm the intrinsically disordered nature of the N-terminal extension. Moreover, we confirm the main role of these residues in modulating the conformational dynamics of the glutathione-binding pocket. We observe that the N-terminal extension modifies the ligand cavity stiffening it by specific interactions that ultimately modulate its intrinsic flexibility, which may modify its role in the storage and/or transfer of preformed iron-sulfur clusters. These unique structural and dynamics aspects of Trypanosoma brucei 1CGrx1 differentiate it from other orthologues and could have functional relevance. In this way, our results encourage the study of other similar protein folding families with intrinsically disordered regions whose functional roles are still unrevealed and the screening of potential 1CGrx1 inhibitors as antitrypanosomal drug candidates.


Subject(s)
Intrinsically Disordered Proteins , Iron-Sulfur Proteins , Trypanosoma brucei brucei , Glutaredoxins/genetics , Glutaredoxins/metabolism , Humans , Ligands , Protein Binding , Protein Folding , Trypanosoma brucei brucei/metabolism
2.
J Chem Inf Model ; 60(10): 5142-5152, 2020 10 26.
Article in English | MEDLINE | ID: mdl-32815723

ABSTRACT

Aurein 1.2 is an antimicrobial peptide from the skin secretion of an Australian frog. In the previous experimental work, we reported a differential action of aurein 1.2 on two probiotic strains Lactobacillus delbrueckii subsp. bulgaricus (CIDCA 331) and Lactobacillus delbrueckii subsp. lactis (CIDCA 133). The differences found were attributed to the bilayer compositions. Cell cultures and CIDCA 331-derived liposomes showed higher susceptibility than the ones derived from the CIDCA 133 strain, leading to content leakage and structural disruption. Here, we used molecular dynamics simulations to explore these systems at the atomistic level. We hypothesize that if the antimicrobial peptides organized themselves to form a pore, it will be more stable in membranes that emulate the CIDCA 331 strain than in those of the CIDCA 133 strain. To test this hypothesis, we simulated preassembled aurein 1.2 pores embedded into bilayer models that emulate the two probiotic strains. It was found that the general behavior of the systems depends on the composition of the membrane rather than the preassemble system characteristics. Overall, it was observed that aurein 1.2 pores are more stable in the CIDCA 331 model membranes. This fact coincides with the high susceptibility of this strain against antimicrobial peptide. In contrast, in the case of the CIDCA 133 model membranes, peptides migrate to the water-lipid interphase, the pore shrinks, and the transport of water through the pore is reduced. The tendency of glycolipids to make hydrogen bonds with peptides destabilizes the pore structures. This feature is observed to a lesser extent in CIDCA 331 due to the presence of anionic lipids. Glycolipid transverse diffusion (flip-flop) between monolayers occurs in the pore surface region in all the cases considered. These findings expand our understanding of the antimicrobial peptide resistance properties of probiotic strains.


Subject(s)
Probiotics , Australia , Lactobacillus , Lipid Bilayers , Molecular Dynamics Simulation
3.
Molecules ; 22(10)2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29053635

ABSTRACT

In this work; we investigated the differential interaction of amphiphilic antimicrobial peptides with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid structures by means of extensive molecular dynamics simulations. By using a coarse-grained (CG) model within the MARTINI force field; we simulated the peptide-lipid system from three different initial configurations: (a) peptides in water in the presence of a pre-equilibrated lipid bilayer; (b) peptides inside the hydrophobic core of the membrane; and (c) random configurations that allow self-assembled molecular structures. This last approach allowed us to sample the structural space of the systems and consider cooperative effects. The peptides used in our simulations are aurein 1.2 and maculatin 1.1; two well-known antimicrobial peptides from the Australian tree frogs; and molecules that present different membrane-perturbing behaviors. Our results showed differential behaviors for each type of peptide seen in a different organization that could guide a molecular interpretation of the experimental data. While both peptides are capable of forming membrane aggregates; the aurein 1.2 ones have a pore-like structure and exhibit a higher level of organization than those conformed by maculatin 1.1. Furthermore; maculatin 1.1 has a strong tendency to form clusters and induce curvature at low peptide-lipid ratios. The exploration of the possible lipid-peptide structures; as the one carried out here; could be a good tool for recognizing specific configurations that should be further studied with more sophisticated methodologies.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Amphibian Proteins/chemistry , Amphibian Proteins/pharmacology , Computer Simulation , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Models, Molecular , Molecular Conformation , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...