Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Int ; 159: 105404, 2022 10.
Article in English | MEDLINE | ID: mdl-35853552

ABSTRACT

Selegiline, also known as L-deprenyl, and (2R)-1-(1-benzofuran-2-yl)-N-propylpentane-2-amine (BPAP) were found to induce enhancement of monoamine neurotransmission in low and very low doses. In addition, these enhancers may modify glutamatergic neurotransmission. The aim of the present study was to test the hypothesis that under stress conditions, chronic treatment with enhancer drugs has a positive impact on the glutamatergic system and other parameters related to brain plasticity, stress-related systems, and anxiety behavior. We exposed male Wistar rats to a chronic mild stress procedure combined with chronic treatment with two synthetic enhancer drugs. The gene expression of GluR1, an AMPA receptor subunit was reduced by repeated treatment with deprenyl in the hippocampus and with both BPAP and deprenyl in the prefrontal cortex. A significant reduction of NMDA receptor subunit GluN2B expression was observed in the hippocampus but not in the prefrontal cortex. Deprenyl treatment led to an enhancement of hippocampal BDNFmRNA concentrations in stress-exposed rats. Treatment with enhancer drugs failed to induce significant changes in stress hormone concentrations or anxiety behavior. In conclusion, the present study in chronically stressed rats showed that concomitant treatment with enhancer drugs did not provoke substantial neuroendocrine changes, but modified gene expression of selected parameters associated with brain plasticity. Observed changes may indicate a positive influence of enhancer drugs on brain plasticity, which is important for preventing negative consequences of chronic stress and enhancement of stress resilience. It may be suggested that the changes in glutamate receptor subunits induced by enhancer drugs are brain region-specific and not dose-related.


Subject(s)
Neuronal Plasticity , Selegiline , Animals , Brain/metabolism , Gene Expression , Hippocampus , Male , Neuronal Plasticity/genetics , Rats , Rats, Wistar , Selegiline/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...