Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 6391, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38493266

ABSTRACT

The purpose of this feasibility study is to investigate if latent diffusion models (LDMs) are capable to generate contrast enhanced (CE) MRI-derived subtraction maximum intensity projections (MIPs) of the breast, which are conditioned by lesions. We trained an LDM with n = 2832 CE-MIPs of breast MRI examinations of n = 1966 patients (median age: 50 years) acquired between the years 2015 and 2020. The LDM was subsequently conditioned with n = 756 segmented lesions from n = 407 examinations, indicating their location and BI-RADS scores. By applying the LDM, synthetic images were generated from the segmentations of an independent validation dataset. Lesions, anatomical correctness, and realistic impression of synthetic and real MIP images were further assessed in a multi-rater study with five independent raters, each evaluating n = 204 MIPs (50% real/50% synthetic images). The detection of synthetic MIPs by the raters was akin to random guessing with an AUC of 0.58. Interrater reliability of the lesion assessment was high both for real (Kendall's W = 0.77) and synthetic images (W = 0.85). A higher AUC was observed for the detection of suspicious lesions (BI-RADS ≥ 4) in synthetic MIPs (0.88 vs. 0.77; p = 0.051). Our results show that LDMs can generate lesion-conditioned MRI-derived CE subtraction MIPs of the breast, however, they also indicate that the LDM tended to generate rather typical or 'textbook representations' of lesions.


Subject(s)
Breast Neoplasms , Contrast Media , Humans , Middle Aged , Female , Reproducibility of Results , Magnetic Resonance Imaging/methods , Breast/diagnostic imaging , Breast/pathology , Physical Examination , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Retrospective Studies
3.
Eur Radiol Exp ; 7(1): 80, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38093075

ABSTRACT

BACKGROUND: To analyze regional variations in T2 and T2* relaxation times in wrist joint cartilage and the triangular fibrocartilage complex (TFCC) at 3 and 7 T and to compare values between field strengths. METHODS: Twenty-five healthy controls and 25 patients with chronic wrist pain were examined at 3 and 7 T on the same day using T2- and T2*-weighted sequences. Six different regions of interest (ROIs) were evaluated for cartilage and 3 ROIs were evaluated at the TFCC based on manual segmentation. Paired t-tests were used to compare T2 and T2* values between field strengths and between different ROIs. Spearman's rank correlation was calculated to assess correlations between T2 and T2* time values at 3 and 7 T. RESULTS: T2 and T2* time values of the cartilage differed significantly between 3 and 7 T for all ROIs (p ≤ 0.045), with one exception: at the distal lunate, no significant differences in T2 values were observed between field strengths. T2* values differed significantly between 3 and 7 T for all ROIs of the TFCC (p ≤ 0.001). Spearman's rank correlation between 3 and 7 T ranged from 0.03 to 0.62 for T2 values and from 0.01 to 0.48 for T2* values. T2 and T2* values for cartilage varied across anatomic locations in healthy controls at both 3 and 7 T. CONCLUSION: Quantitative results of T2 and T2* mapping at the wrist differ between field strengths, with poor correlation between 3 and 7 T. Local variations in cartilage T2 and T2* values are observed in healthy individuals. RELEVANCE STATEMENT: T2 and T2* mapping are feasible for compositional imaging of the TFCC and the cartilage at the wrist at both 3 and 7 T, but the clinical interpretation remains challenging due to differences between field strengths and variations between anatomic locations. KEY POINTS: •Field strength and anatomic locations influence T2 and T2* values at the wrist. •T2 and T2* values have a poor correlation between 3 and 7 T. •Local reference values are needed for each anatomic location for reliable interpretation.


Subject(s)
Wrist Joint , Wrist , Humans , Wrist/diagnostic imaging , Wrist Joint/diagnostic imaging , Magnetic Resonance Imaging/methods , Cartilage
4.
Acta Radiol ; 64(11): 2881-2890, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37682521

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) provides high diagnostic sensitivity for breast cancer. However, MRI artifacts may impede the diagnostic assessment. This is particularly important when evaluating maximum intensity projections (MIPs), such as in abbreviated MRI (AB-MRI) protocols, because high image quality is desired as a result of fewer sequences being available to compensate for problems. PURPOSE: To describe the prevalence of artifacts on dynamic contrast enhanced (DCE) MRI-derived MIPs and to investigate potentially associated attributes. MATERIAL AND METHODS: For this institutional review board approved retrospective analysis, MIPs were generated from subtraction series and cropped to represent the left and right breasts as regions of interest. These images were labeled by three independent raters regarding the presence of MRI artifacts. MRI artifact prevalence and associations with patient characteristics and technical attributes were analyzed using descriptive statistics and generalized linear models (GLMMs). RESULTS: The study included 2524 examinations from 1794 patients (median age 50 years), performed on 1.5 and 3.0 Tesla MRI systems. Overall inter-rater agreement was kappa = 0.54. Prevalence of significant unilateral artifacts was 29.2% (736/2524), whereas bilateral artifacts were present in 37.8% (953/2524) of all examinations. According to the GLMM, artifacts were significantly positive associated with age (odds ratio [OR] = 1.52) and magnetic field strength (OR = 1.55), whereas a negative effect could be shown for body mass index (OR = 0.95). CONCLUSION: MRI artifacts on DCE subtraction MIPs of the breast, as used in AB-MRI, are a relevant topic. Our results show that, besides the magnetic field strength, further associated attributes are patient age and body mass index, which can provide possible targets for artifact reduction.


Subject(s)
Artifacts , Breast Neoplasms , Humans , Middle Aged , Female , Retrospective Studies , Prevalence , Breast/diagnostic imaging , Breast/pathology , Magnetic Resonance Imaging/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Breast Neoplasms/pathology , Contrast Media
5.
Sci Rep ; 13(1): 10549, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37386021

ABSTRACT

The objective of this IRB approved retrospective study was to apply deep learning to identify magnetic resonance imaging (MRI) artifacts on maximum intensity projections (MIP) of the breast, which were derived from diffusion weighted imaging (DWI) protocols. The dataset consisted of 1309 clinically indicated breast MRI examinations of 1158 individuals (median age [IQR]: 50 years [16.75 years]) acquired between March 2017 and June 2020, in which a DWI sequence with a high b-value equal to 1500 s/mm2 was acquired. From these, 2D MIP images were computed and the left and right breast were cropped out as regions of interest (ROI). The presence of MRI image artifacts on the ROIs was rated by three independent observers. Artifact prevalence in the dataset was 37% (961 out of 2618 images). A DenseNet was trained with a fivefold cross-validation to identify artifacts on these images. In an independent holdout test dataset (n = 350 images) artifacts were detected by the neural network with an area under the precision-recall curve of 0.921 and a positive predictive value of 0.981. Our results show that a deep learning algorithm is capable to identify MRI artifacts in breast DWI-derived MIPs, which could help to improve quality assurance approaches for DWI sequences of breast examinations in the future.


Subject(s)
Deep Learning , Humans , Middle Aged , Retrospective Studies , Diffusion Magnetic Resonance Imaging , Breast/diagnostic imaging , Algorithms
6.
Radiology ; 307(2): e220753, 2023 04.
Article in English | MEDLINE | ID: mdl-36625744

ABSTRACT

Background Ultrahigh-field-strength MRI at 7 T may permit superior visualization of noninflammatory wrist pathologic conditions, particularly due to its high signal-to-noise ratio compared with the clinical standard of 3 T, but direct comparison studies are lacking. Purpose To compare the subjective image quality of 3-T and 7-T ultrahigh-field-strength wrist MRI through semiquantitative scoring of multiple joint tissues in a multireader study. Materials and Methods In this prospective study, healthy controls and participants with chronic wrist pain underwent 3-T and 7-T MRI (coronal T1-weighted turbo spin-echo [TSE], coronal fat-suppressed proton-density [PD]-weighted TSE, transversal T2-weighted TSE) on the same day, from July 2018 to June 2019. Images were scored by seven musculoskeletal radiologists. The overall image quality, presence of artifacts, homogeneity of fat suppression, and visualization of cartilage, the triangular fibrocartilage complex (TFCC), and scapholunate and lunotriquetral ligaments were semiquantitatively assessed. Pairwise differences between 3 T and 7 T were assessed using the Wilcoxon signed-rank test. Interreader reliability was determined using the Fleiss kappa. Results In total, 25 healthy controls (mean age, 25 years ± 4 [SD]; 13 women) and 25 participants with chronic wrist pain (mean age, 39 years ± 16; 14 men) were included. Overall image quality (P = .002) and less presence of artifacts at PD-weighted fat-suppressed MRI were superior at 7 T. T1- and T2-weighted MRI were superior at 3 T (both P < .001), as was fat suppression (P < .001). Visualization of cartilage was superior at 7 T (P < .001), while visualization of the TFCC (P < .001) and scapholunate (P = .048) and lunotriquetral (P = .04) ligaments was superior at 3 T. Interreader reliability showed slight to substantial agreement for the detected pathologic conditions (κ = 0.20-0.64). Conclusion A 7-T MRI of the wrist had potential advantages over 3-T MRI, particularly in cartilage assessment. However, superiority was not shown for all parameters; for example, visualization of the triangular fibrocartilage complex and wrist ligaments was superior at 3 T. © RSNA, 2023 Supplemental material is available for this article.


Subject(s)
Chronic Pain , Wrist , Male , Humans , Female , Adult , Prospective Studies , Reproducibility of Results , Wrist Joint/diagnostic imaging , Magnetic Resonance Imaging/methods , Arthralgia
7.
Insights Imaging ; 13(1): 164, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36219277

ABSTRACT

BACKGROUND: To evaluate the feasibility and benefits of digitized informed patient consent (D-IPC) for contrast-enhanced CT and compare digitized documentation with paper-based, conventional patient records (C-PR). METHODS: We offered D-IPC to 2016 patients scheduled for a CT. We assessed patient history (e.g., CT examinations, malignant or cardiovascular diseases) and contraindications (red flags) for a CT (e.g., thyroid hyperfunction, allergies) using a tablet device. We evaluated the success rate of D-IPC and compared patient age between the subgroups of patients who were able or unable to complete D-IPC. We analyzed the prevalence of marked questions and red flags (RF). RF were compared with the documentation from C-PR. We estimated greenhouse gas (GHG) emissions for paperless workflow and provide a cost-benefit analysis. RESULTS: Overall, 84.4% of patients completed D-IPC. They were younger (median 61 years) than unsuccessful patients (65 years; p < 0.001). Patients who marked questions (21.7%) were older than patients without inquiries (median 63.9 vs 59.5 years; p < 0.001). The most prevalent RF was thyroid disease (23.8%). RF were considered critical for contrast-agent injection in 13.7%, requiring personalized preparation. The detection rate for RF documented with D-IPC was higher than for C-PR (n = 385 vs. 43). GHG emissions for tablet production are 80-90 times higher than for paper production. The estimated costs were slightly higher for D-IPC (+ 8.7%). CONCLUSION: D-IPC is feasible, but patient age is a relevant factor. Marked questions and RF help personalize IPC. The availability of patient history by D-IPC was superior compared to C-PR.

8.
Diagnostics (Basel) ; 11(5)2021 May 09.
Article in English | MEDLINE | ID: mdl-34065039

ABSTRACT

The primary objective of the study was to compare a spiral breast computed tomography system (SBCT) to digital breast tomosynthesis (DBT) for the detection of microcalcifications (MCs) in breast specimens. The secondary objective was to compare various reconstruction modes in SBCT. In total, 54 breast biopsy specimens were examined with mammography as a standard reference, with DBT, and with a dedicated SBCT containing a photon-counting detector. Three different reconstruction modes were applied for SBCT datasets (Recon1 = voxel size (0.15 mm)3, smooth kernel; Recon2 = voxel size (0.05 mm)3, smooth kernel; Recon3 = voxel size (0.05 mm)3, sharp kernel). Sensitivity and specificity of DBT and SBCT for the detection of suspicious MCs were analyzed, and the McNemar test was used for comparisons. Diagnostic confidence of the two readers (Likert Scale 1 = not confident; 5 = completely confident) was analyzed with ANOVA. Regarding detection of MCs, reader 1 had a higher sensitivity for DBT (94.3%) and Recon2 (94.9%) compared to Recon1 (88.5%; p < 0.05), while sensitivity for Recon3 was 92.4%. Respectively, reader 2 had a higher sensitivity for DBT (93.0%), Recon2 (92.4%), and Recon3 (93.0%) compared to Recon1 (86.0%; p < 0.05). Specificities ranged from 84.7-94.9% for both readers (p > 0.05). The diagnostic confidence of reader 1 was better with SBCT than with DBT (DBT 4.48 ± 0.88, Recon1 4.77 ± 0.66, Recon2 4.89 ± 0.44, and Recon3 4.75 ± 0.72; DBT vs. Recon1/2/3: p < 0.05), while reader 2 found no differences. Sensitivity and specificity for the detection of MCs in breast specimens is equal for DBT and SBCT when a small voxel size of (0.05 mm)3 is used with an equal or better diagnostic confidence for SBCT compared to DBT.

SELECTION OF CITATIONS
SEARCH DETAIL
...