Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Materials (Basel) ; 15(1)2021 Dec 25.
Article in English | MEDLINE | ID: mdl-35009290

ABSTRACT

Duplex α + ß' brasses are widely used in drinking water distribution systems for tube fittings, valves, and ancillaries because they are low cost, easy to fabricate, and exhibit high mechanical strength. However, depending on application conditions and alloy composition, they may undergo dealloying and stress corrosion cracking. In this research, three different brass types, two leaded (CW617N and CW602N) alloys and one lead-free brass (CW724R), were investigated to assess their corrosion behavior and susceptibility to stress corrosion cracking (SCC) in simulated drinking water (SDW) solutions containing different chloride concentrations, compatible with drinking water composition requirements according to Moroccan standard NM 03.7.001. The corrosion behavior was assessed by electrochemical tests such as polarization curve recording and electrochemical impedance spectroscopy (EIS) monitoring, coupled to SEM-EDS surface observations. The susceptibility to SCC was investigated by slow strain rate tests (SSRT). The tests showed that corrosion was mainly under diffusion control and chlorides slightly accelerated corrosion rates. All alloys, and particularly CW617N, were affected by SCC under the testing conditions adopted and in general the SCC susceptibility increased at increasing chloride concentration.

2.
Sci Rep ; 7: 43943, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28266656

ABSTRACT

This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub 'collapse trap'. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty.


Subject(s)
Agricultural Irrigation/economics , Agricultural Irrigation/organization & administration , Ecosystem , Population Density , Population Dynamics , Humans , Models, Theoretical
3.
J Environ Manage ; 202(Pt 3): 495-499, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28291557
4.
J Environ Manage ; 202(Pt 3): 550-561, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-27424883

ABSTRACT

Historical and traditional flood-irrigated (FI) schemes are progressively being upgraded by means of drip irrigation (DI) to tackle current water and demographic challenges. This modernization process is likely to foster several changes of environmental relevance at the system level. In this paper we assess the effects derived from DI uptake on soil health and structure in ancient FI systems through the case study of Ricote, SE Spain, first established in the 10-13th centuries CE. We approach the topic by means of physico-chemical analyses (pH, electrical conductivity, available P, carbon analyses, bulk density, soil water content and particle size distribution), Electrical Resistivity Measurements (ERT) and robust statistics. We reach a power of 1-ß = 77 aiming at detecting a large effect size (f ≥ 0.4). Results indicate that, compared to FI, DI soils present significantly higher water content, a higher proportion of coarse particles relative to fines due to clay translocation, and less dispersion in salt contents. The soils away from the emitters, which were formerly FI and comparatively account for larger extensions, appear significantly depleted in organic matter, available P and N. These results are not affected by departures from statistical model assumptions and suggest that DI uptake in formerly FI systems might have relevant implications in terms of soil degradation and emission of greenhouse gases. A proper assessment of the edaphological trade-offs derived from this modernization process is mandatory in order to tackle undesired environmental consequences.


Subject(s)
Agricultural Irrigation , Environmental Monitoring , Soil Pollutants , Agriculture , Soil , Spain , Water
5.
Nanoscale ; 8(12): 6577-88, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-26934984

ABSTRACT

Recent in vivo studies have established ultrasmall (<3 nm) gold nanoparticles coated with glutathione (AuGSH) as a promising platform for applications in nanomedicine. However, systematic in vitro investigations to gain a more fundamental understanding of the particles' biointeractions are still lacking. Herein we examined the behavior of ultrasmall AuGSH in vitro, focusing on their ability to resist aggregation and adsorption from serum proteins. Despite having net negative charge, AuGSH particles were colloidally stable in biological media and able to resist binding from serum proteins, in agreement with the favorable bioresponses reported for AuGSH in vivo. However, our results revealed disparate behaviors depending on nanoparticle size: particles between 2 and 3 nm in core diameter were found to readily aggregate in biological media, whereas those strictly under 2 nm were exceptionally stable. Molecular dynamics simulations provided microscopic insight into interparticle interactions leading to aggregation and their sensitivity to the solution composition and particle size. These results have important implications, in that seemingly small variations in size can impact the biointeractions of ultrasmall AuGSH, and potentially of other ultrasmall nanoparticles as well.


Subject(s)
Glutathione/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Adsorption , Animals , Area Under Curve , Blood Proteins/chemistry , Cattle , Colloids/chemistry , Computer Simulation , Ligands , Microscopy, Electron, Scanning Transmission , Molecular Dynamics Simulation , Particle Size , Protein Binding , Spectrophotometry, Ultraviolet , Surface Properties , Ultracentrifugation
6.
Materials (Basel) ; 9(6)2016 Jun 18.
Article in English | MEDLINE | ID: mdl-28773611

ABSTRACT

In the present study, nearly fully dense monolithic ZrC samples are produced and broadly characterized from microstructural, mechanical and optical points of view. Specifically, 98% dense products are obtained by Spark Plasma Sintering (SPS) after 20 min dwell time at 1850 °C starting from powders preliminarily prepared by Self-propagating High-temperature Synthesis (SHS) followed by 20 min ball milling. A prolonged mechanical treatment up to 2 h of SHS powders does not lead to appreciable benefits. Vickers hardness of the resulting samples (17.5 ± 0.4 GPa) is reasonably good for monolithic ceramics, but the mechanical strength (about 250 MPa up to 1000 °C) could be further improved by suitable optimization of the starting powder characteristics. The very smoothly polished ZrC specimen subjected to optical measurements displays high absorption in the visible-near infrared region and low thermal emittance at longer wavelengths. Moreover, the sample exhibits goodspectral selectivity (2.1-2.4) in the 1000-1400 K temperature range. These preliminary results suggest that ZrC ceramics produced through the two-step SHS/SPS processing route can be considered as attractive reference materials for the development of innovative solar energy absorbers.

7.
Biochemistry ; 54(38): 5867-77, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26313375

ABSTRACT

Gram-negative bacteria tightly regulate intracellular levels of iron, an essential nutrient. To ensure this strict control, some outer membrane TonB-dependent transporters (TBDTs) that are responsible for iron import stimulate their own transcription in response to extracellular binding by an iron-laden siderophore. This process is mediated by an inner membrane sigma regulator protein (an anti-sigma factor) that transduces an unknown periplasmic signal from the TBDT to release an intracellular sigma factor from the inner membrane, which ultimately upregulates TBDT transcription. Here, we use the Pseudomonas putida ferric-pseudobactin BN7/BN8 sigma regulator, PupR, as a model system to understand the molecular mechanism of this conserved class of sigma regulators. We have determined the X-ray crystal structure of the cytoplasmic anti-sigma domain (ASD) of PupR to 2.0 Å. Size exclusion chromatography, small-angle X-ray scattering, and sedimentation velocity analytical ultracentrifugation all indicate that, in contrast to other ASDs, the PupR-ASD exists as a dimer in solution. Mutagenesis of residues at the dimer interface identified from the crystal structure disrupts dimerization and protein stability, as determined by sedimentation velocity analytical ultracentrifugation and thermal denaturation circular dichroism spectroscopy. These combined results suggest that this type of inner membrane sigma regulator may utilize an unusual mechanism to sequester their cognate sigma factors and prevent transcription activation.


Subject(s)
Bacterial Proteins/chemistry , Membrane Proteins/chemistry , Pseudomonas putida/chemistry , Crystallography, X-Ray , Models, Molecular , Protein Multimerization , Protein Stability , Protein Structure, Tertiary
8.
Int J Environ Res Public Health ; 12(7): 8295-311, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26193296

ABSTRACT

The worktops in both chemical and microbiological laboratories are the surfaces most vulnerable to damage and exposure to contamination by indoor pollutants. The rate at which particles are deposited on indoor surfaces is an important parameter to determine human exposure to airborne biological particles. In contrast to what has been established for inorganic pollutants, no limit has been set by law for microbial contamination in indoor air. To our knowledge, a comparative study on the effect of surfaces on the deposition of microbes has not been carried out. An evaluation of the microbial contamination of worktop materials could be of crucial importance, both for safety reasons and for the reliability of tests and experiments that need to be carried out in non-contaminated environments. The aim of this study was to evaluate the overall microbial contamination (fungi, mesophilic and psychrophilic bacteria, staphylococci) on six widely used worktop materials in laboratories (glass, stainless steel, fine porcelain stoneware, post-forming laminate, high-performing laminate and enamel steel) and to correlate it with the characteristics of the surfaces. After cleaning, the kinetics of microbial re-contamination were also evaluated for all surfaces.


Subject(s)
Bacteria/isolation & purification , Equipment Contamination , Fungi/isolation & purification , Hazardous Substances/analysis , Laboratories , Bacteria/growth & development , Bacteriological Techniques , Colony Count, Microbial , Fungi/growth & development , Humans , Reproducibility of Results , Stainless Steel
9.
Anal Biochem ; 458: 37-9, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24799348

ABSTRACT

Accurate measurements of rotor temperature are critical for the interpretation of hydrodynamic parameters in analytical ultracentrifugation. We have recently developed methods for a more accurate determination of the temperature of a spinning rotor using iButton temperature loggers. Here we report that the temperature measured with the iButton on the counterbalance of a resting rotor, following thermal equilibration under high vacuum, closely corresponded to the temperature of the spinning rotor with a precision better than 0.2°C. This strategy offers an inexpensive and straightforward approach to monitor the accuracy of the temperature calibration and determine corrective temperature offsets.


Subject(s)
Ultracentrifugation , Calibration , Hydrodynamics , Proteins/analysis , Temperature , Ultracentrifugation/standards
10.
Anal Biochem ; 451: 69-75, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24530285

ABSTRACT

Sedimentation velocity is a classical method for measuring the hydrodynamic, translational friction coefficient of biological macromolecules. In a recent study comparing various analytical ultracentrifuges, we showed that external calibration of the scan time, radial magnification, and temperature is critically important for accurate measurements (Anal. Biochem. 440 (2013) 81-95). To achieve accurate temperature calibration, we introduced the use of an autonomous miniature temperature logging integrated circuit (Maxim Thermochron iButton) that can be inserted into an ultracentrifugation cell assembly and spun at low rotor speeds. In the current work, we developed an improved holder for the temperature sensor located in the rotor handle. This has the advantage of not reducing the rotor capacity and allowing for a direct temperature measurement of the spinning rotor during high-speed sedimentation velocity experiments up to 60,000rpm. We demonstrated the sensitivity of this approach by monitoring the adiabatic cooling due to rotor stretching during rotor acceleration and the reverse process on rotor deceleration. Based on this, we developed a procedure to approximate isothermal rotor acceleration for better temperature control.


Subject(s)
Ultracentrifugation , Temperature , Time Factors
11.
J Virol ; 88(6): 3298-308, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24390327

ABSTRACT

UNLABELLED: The U21 gene product from human herpesvirus 7 binds to and redirects class I major histocompatibility complex (MHC) molecules to a lysosomal compartment. The molecular mechanism by which U21 reroutes class I MHC molecules to lysosomes is not known. Here, we have reconstituted the interaction between purified soluble U21 and class I MHC molecules, suggesting that U21 does not require additional cellular proteins to interact with class I MHC molecules. Our results demonstrate that U21, itself predicted to contain an MHC class I-like protein fold, interacts tightly with class I MHC molecules as a tetramer, in a 4:2 stoichiometry. These observations have helped to elucidate a refined model describing the mechanism by which U21 escorts class I MHC molecules to the lysosomal compartment. IMPORTANCE: In this report, we show that the human herpesvirus 7 (HHV-7) immunoevasin U21, itself a class I MHC-like protein, binds with high affinity to class I MHC molecules as a tetramer and escorts them to lysosomes, where they are degraded. While many class I MHC-like molecules have been described in detail, this unusual viral class I-like protein functions as a tetramer, associating with class I MHC molecules in a 4:2 ratio, illuminating a functional significance of homooligomerization of a class I MHC-like protein.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/metabolism , Herpesvirus 7, Human/metabolism , Histocompatibility Antigens Class I/metabolism , Roseolovirus Infections/metabolism , Roseolovirus Infections/virology , Viral Proteins/chemistry , Viral Proteins/metabolism , Carrier Proteins/genetics , Herpesvirus 7, Human/chemistry , Herpesvirus 7, Human/genetics , Humans , Protein Binding , Protein Multimerization , Viral Proteins/genetics
12.
Mol Cell Biol ; 33(21): 4140-51, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23979596

ABSTRACT

The adapter molecules SLP-76 and LAT play central roles in T cell activation by recruiting enzymes and other adapters into multiprotein complexes that coordinate highly regulated signal transduction pathways. While many of the associated proteins have been characterized, less is known concerning the mechanisms of assembly for these dynamic and potentially heterogeneous signaling complexes. Following T cell receptor (TCR) stimulation, SLP-76 is found in structures called microclusters, which contain many signaling complexes. Previous studies showed that a mutation to the SLP-76 C-terminal SH2 domain nearly abolished SLP-76 microclusters, suggesting that the SH2 domain facilitates incorporation of signaling complexes into microclusters. S. C. Bunnell, A. L. Singer, D. I. Hong, B. H. Jacque, M. S. Jordan, M. C. Seminario, V. A. Barr, G. A. Koretzky, and L. E. Samelson, Mol. Cell. Biol., 26:7155-7166, 2006). Using biophysical methods, we demonstrate that the adapter, ADAP, contains three binding sites for SLP-76, and that multipoint binding to ADAP fragments oligomerizes the SLP-76 SH2 domain in vitro. These results were complemented with confocal imaging and functional studies of cells expressing ADAP with various mutations. Our results demonstrate that all three binding sites are critical for SLP-76 microcluster assembly, but any combination of two sites will partially induce microclusters. These data support a model whereby multipoint binding of SLP-76 to ADAP facilitates the assembly of SLP-76 microclusters. This model has implications for the regulation of SLP-76 and LAT microclusters and, as a result, T cell signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Phosphoproteins/metabolism , Protein Multimerization , T-Lymphocytes/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Calcium Signaling , Cell Adhesion , Humans , Jurkat Cells , Molecular Sequence Data , Peptide Fragments/chemistry , Phosphopeptides/chemistry , Phosphoproteins/chemistry , Phosphoproteins/genetics , Protein Binding , Single-Cell Analysis , Thermodynamics , Time-Lapse Imaging , src Homology Domains
14.
Anal Biochem ; 440(1): 81-95, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23711724

ABSTRACT

Sedimentation velocity (SV) is a method based on first principles that provides a precise hydrodynamic characterization of macromolecules in solution. Due to recent improvements in data analysis, the accuracy of experimental SV data emerges as a limiting factor in its interpretation. Our goal was to unravel the sources of experimental error and develop improved calibration procedures. We implemented the use of a Thermochron iButton temperature logger to directly measure the temperature of a spinning rotor and detected deviations that can translate into an error of as much as 10% in the sedimentation coefficient. We further designed a precision mask with equidistant markers to correct for instrumental errors in the radial calibration that were observed to span a range of 8.6%. The need for an independent time calibration emerged with use of the current data acquisition software (Zhao et al., Anal. Biochem., 437 (2013) 104-108), and we now show that smaller but significant time errors of up to 2% also occur with earlier versions. After application of these calibration corrections, the sedimentation coefficients obtained from 11 instruments displayed a significantly reduced standard deviation of approximately 0.7%. This study demonstrates the need for external calibration procedures and regular control experiments with a sedimentation coefficient standard.


Subject(s)
Calibration/standards , Serum Albumin, Bovine/analysis , Ultracentrifugation/methods , Area Under Curve , Reproducibility of Results , Temperature , Time , Ultracentrifugation/instrumentation , Ultracentrifugation/standards
15.
PLoS One ; 7(7): e42109, 2012.
Article in English | MEDLINE | ID: mdl-22848723

ABSTRACT

We present the results of the microstratigraphic, phytolith and wood charcoal study of the remains of a 10.5 ka roof. The roof is part of a building excavated at Tell Qarassa (South Syria), assigned to the Pre-Pottery Neolithic B period (PPNB). The Pre-Pottery Neolithic (PPN) period in the Levant coincides with the emergence of farming. This fundamental change in subsistence strategy implied the shift from mobile to settled aggregated life, and from tents and huts to hard buildings. As settled life spread across the Levant, a generalised transition from round to square buildings occurred, that is a trademark of the PPNB period. The study of these buildings is fundamental for the understanding of the ever-stronger reciprocal socio-ecological relationship humans developed with the local environment since the introduction of sedentism and domestication. Descriptions of buildings in PPN archaeological contexts are usually restricted to the macroscopic observation of wooden elements (posts and beams) and mineral components (daub, plaster and stone elements). Reconstructions of microscopic and organic components are frequently based on ethnographic analogy. The direct study of macroscopic and microscopic, organic and mineral, building components performed at Tell Qarassa provides new insights on building conception, maintenance, use and destruction. These elements reflect new emerging paradigms in the relationship between Neolithic societies and the environment. A square building was possibly covered here with a radial roof, providing a glance into a topologic shift in the conception and understanding of volumes, from round-based to square-based geometries. Macroscopic and microscopic roof components indicate buildings were conceived for year-round residence rather than seasonal mobility. This implied performing maintenance and restoration of partially damaged buildings, as well as their adaptation to seasonal variability.


Subject(s)
Archaeology , Construction Materials , Environment , Social Change , Technology , Calcium Carbonate/chemistry , Charcoal/chemistry , Geological Phenomena , Radiometric Dating , Residence Characteristics , Syria , Wood/chemistry
16.
J Gen Physiol ; 139(5): 371-88, 2012 May.
Article in English | MEDLINE | ID: mdl-22508847

ABSTRACT

Analytical ultracentrifugation (AUC) and steady-state fluorescence anisotropy were used to measure the equilibrium dissociation constant (Kd) for formation of dimers by the amino-terminal domains (ATDs) of the GluA2 and GluA3 subtypes of AMPA receptor. Previous reports on GluA2 dimerization differed in their estimate of the monomer-dimer Kd by a 2,400-fold range, with no consensus on whether the ATD forms tetramers in solution. We find by sedimentation velocity (SV) analysis performed using absorbance detection a narrow range of monomer-dimer Kd values for GluA2, from 5 to 11 nM for six independent experiments, with no detectable formation of tetramers and no effect of glycosylation or the polypeptide linker connecting the ATD and ligand-binding domains; for GluA3, the monomer-dimer Kd was 5.6 µM, again with no detectable tetramer formation. For sedimentation equilibrium (SE) experiments, a wide range of Kd values was obtained for GluA2, from 13 to 284 nM, whereas for GluA3, the Kd of 3.1 µM was less than twofold different from the SV value. Analysis of cell contents after the ∼1-week centrifuge run by silver-stained gels revealed low molecular weight GluA2 breakdown products. Simulated data for SE runs demonstrate that the apparent Kd for GluA2 varies with the extent of proteolysis, leading to artificially high Kd values. SV experiments with fluorescence detection for GluA2 labeled with 5,6-carboxyfluorescein, and fluorescence anisotropy measurements for GluA2 labeled with DyLight405, yielded Kd values of 5 and 11 nM, consistent with those from SV with absorbance detection. However, the sedimentation coefficients measured by AUC using absorbance and fluorescence systems were strikingly different, and for the latter are not consistent with hydrodynamic protein models. Thus, for unknown reasons, the concentration dependence of sedimentation coefficients obtained with fluorescence detection SV may be unreliable, limiting the usefulness of this technique for quantitative analysis.


Subject(s)
Receptors, AMPA/chemistry , Cells, Cultured , Fluorescence Polarization , HEK293 Cells , Humans , Kinetics , Models, Molecular , Protein Multimerization , Receptors, AMPA/metabolism , Ultracentrifugation
17.
PLoS One ; 6(10): e26221, 2011.
Article in English | MEDLINE | ID: mdl-22028836

ABSTRACT

The partial-specific volume of proteins is an important thermodynamic parameter required for the interpretation of data in several biophysical disciplines. Building on recent advances in the use of density variation sedimentation velocity analytical ultracentrifugation for the determination of macromolecular partial-specific volumes, we have explored a direct global modeling approach describing the sedimentation boundaries in different solvents with a joint differential sedimentation coefficient distribution. This takes full advantage of the influence of different macromolecular buoyancy on both the spread and the velocity of the sedimentation boundary. It should lend itself well to the study of interacting macromolecules and/or heterogeneous samples in microgram quantities. Model applications to three protein samples studied in either H(2)O, or isotopically enriched H(2) (18)O mixtures, indicate that partial-specific volumes can be determined with a statistical precision of better than 0.5%, provided signal/noise ratios of 50-100 can be achieved in the measurement of the macromolecular sedimentation velocity profiles. The approach is implemented in the global modeling software SEDPHAT.


Subject(s)
Models, Theoretical , Proteins/chemistry , Animals , Cattle , Deuterium Exchange Measurement , Humans , Molecular Weight , Proteins/isolation & purification , Rabbits , Solvents/chemistry , Thermodynamics , Ultracentrifugation
18.
Biochemistry ; 50(14): 2951-61, 2011 Apr 12.
Article in English | MEDLINE | ID: mdl-21375242

ABSTRACT

Epithelial- and neural-cadherins are specifically localized at synapses in neurons which can change the shape and contact surface on a time scale of seconds to months. We have focused our studies on the role of the extracellular domains of cadherins in the dynamics of synapses. The kinetics of dimer disassembly of the first two extracellular domains of E- and N-cadherin, ECAD12 and NCAD12, were studied with analytical size exclusion chromatography and sedimentation velocity. NCAD12 forms three different dimers that are distinguished by assembly conditions and kinetics of dissociation. ECAD12 dimer disassembles rapidly regardless of the calcium concentration, whereas the disassembly of NCAD12 dimers was strongly dependent on calcium concentration. In addition to the apo- and saturated-dimeric forms of NCAD12, there is a third dimeric form that is a slow exchange dimer. This third dimeric form for NCAD12, formed by decalcification of the calcium-saturated dimer, was kinetically trapped in apo-conditions and did not disassemble over a period of months. Sedimentation velocity experiments showed that this dimer, upon addition of calcium, had similar weighted averages as a calcium-saturated dimer. These studies provide evidence that the kinetics of dimer disassembly of the extracellular domains may be a major contributor to the morphological dynamics of synapses in vivo.


Subject(s)
Cadherins/chemistry , Protein Multimerization , Recombinant Proteins/chemistry , Algorithms , Animals , Binding Sites , Cadherins/genetics , Cadherins/metabolism , Calcium/chemistry , Calcium/metabolism , Circular Dichroism , Kinetics , Mice , Models, Chemical , Protein Binding , Protein Denaturation , Protein Unfolding , Recombinant Proteins/metabolism , Temperature , Thermodynamics
19.
Methods ; 54(1): 16-30, 2011 May.
Article in English | MEDLINE | ID: mdl-21315155

ABSTRACT

Sedimentation velocity (SV) experiments of heterogeneous interacting systems exhibit characteristic boundary structures that can usually be very easily recognized and quantified. For slowly interacting systems, the boundaries represent concentrations of macromolecular species sedimenting at different rates, and they can be interpreted directly with population models based solely on the mass action law. For fast reactions, migration and chemical reactions are coupled, and different, but equally easily discernable boundary structures appear. However, these features have not been commonly utilized for data analysis, for the lack of an intuitive and computationally simple model. The recently introduced effective particle theory (EPT) provides a suitable framework. Here, we review the motivation and theoretical basis of EPT, and explore practical aspects for its application. We introduce an EPT-based design tool for SV experiments of heterogeneous interactions in the software SEDPHAT. As a practical tool for the first step of data analysis, we describe how the boundary resolution of the sedimentation coefficient distribution c(s) can be further improved with a Bayesian adjustment of maximum entropy regularization to the case of heterogeneous interactions between molecules that have been previously studied separately. This can facilitate extracting the characteristic boundary features by integration of c(s). In a second step, these are assembled into isotherms as a function of total loading concentrations and fitted with EPT. Methods for addressing concentration errors in isotherms are discussed. Finally, in an experimental model system of alpha-chymotrypsin interacting with soybean trypsin inhibitor, we show that EPT provides an excellent description of the experimental sedimentation boundary structure of fast interacting systems.


Subject(s)
Chymotrypsin/chemistry , Soybean Proteins/chemistry , Trypsin Inhibitors/chemistry , Ultracentrifugation/methods , Bayes Theorem , Entropy , Kinetics , Models, Chemical
20.
EMBO J ; 29(14): 2315-28, 2010 Jul 21.
Article in English | MEDLINE | ID: mdl-20562827

ABSTRACT

T-cell antigen receptor (TCR) engagement induces formation of multi-protein signalling complexes essential for regulating T-cell functions. Generation of a complex of SLP-76, Nck and VAV1 is crucial for regulation of the actin machinery. We define the composition, stoichiometry and specificity of interactions in the SLP-76, Nck and VAV1 complex. Our data reveal that this complex can contain one SLP-76 molecule, two Nck and two VAV1 molecules. A direct interaction between Nck and VAV1 is mediated by binding between the C-terminal SH3 domain of Nck and the VAV1 N-terminal SH3 domain. Disruption of the VAV1:Nck interaction deleteriously affected actin polymerization. These novel findings shed new light on the mechanism of actin polymerization after T-cell activation.


Subject(s)
Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Oncogene Proteins/metabolism , Phosphoproteins/metabolism , Proto-Oncogene Proteins c-vav/metabolism , Signal Transduction/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Humans , Jurkat Cells , Lymphocyte Activation , Oncogene Proteins/genetics , Phosphoproteins/genetics , Protein Binding , Proto-Oncogene Proteins c-vav/genetics , Receptors, Antigen, T-Cell/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , src Homology Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...