Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
2.
ACS Appl Mater Interfaces ; 13(10): 12550-12561, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33656870

ABSTRACT

Multifunctional composites that couple high-capacity adsorbents with catalytic nanoparticles (NPs) offer a promising route toward the degradation of organophosphorus pollutants or chemical warfare agents (CWAs). We couple mesoporous TiO2 aerogels with plasmonic Cu nanoparticles (Cu/TiO2) and characterize the degradation of the organophosphorus CWA sarin under both dark and illuminated conditions. Cu/TiO2 aerogels combine high dark degradation rates, which are facilitated by hydrolytically active sites at the Cu||TiO2 interface, with photoenhanced degradation courtesy of semiconducting TiO2 and the surface plasmon resonance (SPR) of the Cu nanoparticles. The TiO2 aerogel provides a high surface area for sarin binding (155 m2 g-1), while the addition of Cu NPs increases the abundance of hydrolytically active OH sites. Degradation is accelerated on TiO2 and Cu/TiO2 aerogels with O2. Under broadband illumination, which excites the TiO2 bandgap and the Cu SPR, sarin degradation accelerates, and the products are more fully mineralized compared to those of the dark reaction. With O2 and broadband illumination, oxidation products are observed on the Cu/TiO2 aerogels as the hydrolysis products subsequently oxidize. In contrast, the photodegradation of sarin on TiO2 is limited by its slow initial hydrolysis, which limits the subsequent photooxidation. Accelerated hydrolysis occurs on Cu/TiO2 aerogels under visible illumination (>480 nm) that excites the Cu SPR but not the TiO2 bandgap, confirming that the Cu SPR excitation contributes to the broadband-driven activity. The high hydrolytic activity of the Cu/TiO2 aerogels combined with the photoactivity upon TiO2 bandgap excitation and Cu SPR excitation is a potent combination of hydrolysis and oxidation that enables the substantial chemical degradation of organophorphorus compounds.

3.
ACS Appl Mater Interfaces ; 13(8): 10500-10512, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33606491

ABSTRACT

A strategy is developed to enhance the barrier protection of polyethylene oxide (PEO)-metal-organic framework (MOF) composite films against chemical warfare agent simulants. To achieve enhanced protection, an impermeable high-aspect-ratio filler in the form of Laponite RD (LRD) clay platelets was incorporated into a composite PEO film containing MOF UiO-66-NH2. The inclusion of the platelets aids in mitigating permeation of inert hydrocarbons (octane) and toxic chemicals (2-chloroethyl ethyl sulfide, 2-CEES) of dimensions/chemistry similar to prominent vesicant threats while still maintaining high water vapor transport rates (WVTR). By utilizing small-angle neutron scattering, small-angle X-ray scattering, and wide-angle X-ray scattering, the LRD platelet alignment of the films was determined, and the structure of the films was correlated with performance as a barrier material. Performance of the membranes against toxic chemical threats was assessed using permeation testing of octane and 2-CEES, a common simulant for the vesicant mustard gas, and breathability of the membranes was assessed using WVTR measurements. To assess their robustness, chemical exposure (in situ diffuse reflectance infrared Fourier transform spectroscopy) and mechanical (tensile strength) measurements were also performed. It was demonstrated that the barrier performance of the film upon inclusion of the LRD platelets exceeds that of other MOF-polymer composites found in the literature and that this approach establishes a new path for improving permselective materials for chemical protection applications.

4.
Commun Chem ; 4(1): 33, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-36697596

ABSTRACT

Bis(2-chloroethyl) sulfide or sulfur mustard (HD) is one of the highest-tonnage chemical warfare agents and one that is highly persistent in the environment. For decontamination, selective oxidation of HD to the substantially less toxic sulfoxide is crucial. We report here a solvent-free, solid, robust catalyst comprising hydrophobic salts of tribromide and nitrate, copper(II) nitrate hydrate, and a solid acid (NafionTM) for selective sulfoxidation using only ambient air at room temperature. This system rapidly removes HD as a neat liquid or a vapor. The mechanisms of these aerobic decontamination reactions are complex, and studies confirm reversible formation of a key intermediate, the bromosulfonium ion, and the role of Cu(II). The latter increases the rate four-fold by increasing the equilibrium concentration of bromosulfonium during turnover. Cu(II) also provides a colorimetric detection capability. Without HD, the solid is green, and with HD, it is brown. Bromine K-edge XANES and EXAFS studies confirm regeneration of tribromide under catalytic conditions. Diffuse reflectance infrared Fourier transform spectroscopy shows absorption of HD vapor and selective conversion to the desired sulfoxide, HDO, at the gas-solid interface.

5.
ACS Appl Mater Interfaces ; 12(52): 58326-58338, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33327718

ABSTRACT

Understanding mechanisms of decontamination of chemical warfare agents (CWA) is an area of intense research aimed at developing new filtration materials to protect soldiers and civilians in case of state-sponsored or terrorist attack. In this study, we employed complementary structural, chemical, and dynamic probes and in situ data collection, to elucidate the complex chemistry, capture, and decomposition of the CWA simulant, dimethyl chlorophosphonate (DMCP). Our work reveals key details of the reactive adsorption of DMCP and demonstrates the versatility of zeolitic imidazolate framework (ZIF-8) as a plausible material for CWA capture and decomposition. The in situ synchrotron-based powder X-ray diffraction (PXRD) and pair distribution function (PDF) studies, combined with Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), zinc K-edge X-ray absorption near edge structure (XANES), and Raman spectroscopies, showed that the unique structure, chemical state, and topology of ZIF-8 enable accessibility, adsorption, and hydrolysis of DMCP into the pores and revealed the importance of linker chemistry and Zn2+ sites for nerve agent decomposition. DMCP decontamination and decomposition product(s) formation were observed by thermogravimetric analysis, FT-IR spectroscopy, and phosphorus (P) K-edge XANES studies. Differential PDF analysis indicated that the average structure of ZIF-8 (at the 30 Å scale) remains unchanged after DMCP dosing and provided information on the dynamics of interactions of DMCP with the ZIF-8 framework. Using in situ PXRD and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), we showed that nearly 90% regeneration of the ZIF-8 structure and complete liberation of DMCP and decomposition products occur upon heating.

6.
ACS Appl Mater Interfaces ; 12(13): 14721-14738, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31815428

ABSTRACT

This Review summarizes the recent progress made in the field of chemical threat reduction by utilizing new in situ analytical techniques and combinations thereof to study multifunctional materials designed for capture and decomposition of nerve gases and their simulants. The emphasis is on the use of in situ experiments that simulate realistic operating conditions (solid-gas interface, ambient pressures and temperatures, time-resolved measurements) and advanced synchrotron methods, such as in situ X-ray absorption and scattering methods, a combination thereof with other complementary measurements (e.g., XPS, Raman, DRIFTS, NMR), and theoretical modeling. The examples presented in this Review range from studies of the adsorption and decomposition of nerve agents and their simulants on Zr-based metal organic frameworks to Nb and Zr-based polyoxometalates and metal (hydro)oxide materials. The approaches employed in these studies ultimately demonstrate how advanced synchrotron-based in situ X-ray absorption spectroscopy and diffraction can be exploited to develop an atomic- level understanding of interfacial binding and reaction of chemical warfare agents, which impacts the development of novel filtration media and other protective materials.

7.
J Phys Chem Lett ; 10(9): 2295-2299, 2019 May 02.
Article in English | MEDLINE | ID: mdl-31002759

ABSTRACT

Development of technologies for protection against chemical warfare agents (CWAs) is critically important. Recently, polyoxometalates have attracted attention as potential catalysts for nerve-agent decomposition. Improvement of their effectiveness in real operating conditions requires an atomic-level understanding of CWA decomposition at the gas-solid interface. We investigated decomposition of the nerve agent Sarin and its simulant, dimethyl chlorophosphate (DMCP), by zirconium polytungstate. Using a multimodal approach, we showed that upon DMCP and Sarin exposure the dimeric tungstate undergoes monomerization, making coordinatively unsaturated Zr(IV) centers available, which activate nucleophilic hydrolysis. Further, DMCP is shown to be a good model system of reduced toxicity for studies of CWA deactivation at the gas-solid interface.

8.
ACS Appl Mater Interfaces ; 11(19): 17931-17939, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30945841

ABSTRACT

A facile method for the formation of mesoporosity within nonporous zirconium hydr(oxides) (ZrO2/Zr(OH)4) is presented and their detoxifying capabilities against dimethyl chlorophosphate (DMCP) are investigated. Nanoaggregates of ZrO2/Zr(OH)4 appear to be deposited on larger thin flakes of the same material. H2O2 is used to induce surface oxygen vacancies of synthesized ZrO2/Zr(OH)4 and, as a consequence, mesopores with an average diameter of 3.1 nm were formed. A surface area of H2O2-treated ZrO2/Zr(OH)4 was increased by an order of magnitude and shows enhanced reactivity toward DMCP. DRIFTS spectroscopy is employed to assess the reactivity differences between the H2O2-treated and untreated ZrO2/Zr(OH)4. Peaks at 1175 and 1144 cm-1 indicate the presence of asymmetric stretching of the O-P-O moiety within dimethyl phosphonate (DMHP), a decomposition product from DMCP, and a zirconium-bound methoxy group, respectively. It is suggested that the decomposition of DMCP proceeds through the consumption of bridged hydroxyl groups (b-OH) for both the untreated and H2O2-treated samples, as well as an additional hydrolytic decomposition pathway for the H2O2-treated sample.

9.
J Am Chem Soc ; 139(2): 599-602, 2017 01 18.
Article in English | MEDLINE | ID: mdl-28038315

ABSTRACT

Zr-based metal organic frameworks (MOFs) have been recently shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. We report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination of DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. These experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.

10.
Angew Chem Int Ed Engl ; 55(26): 7403-7, 2016 06 20.
Article in English | MEDLINE | ID: mdl-27061963

ABSTRACT

A wide range of chemical warfare agents and their simulants are catalytically decontaminated by a new one-dimensional polymeric polyniobate (P-PONb), K12 [Ti2 O2 ][GeNb12 O40 ]⋅19 H2 O (KGeNb) under mild conditions and in the dark. Uniquely, KGeNb facilitates hydrolysis of nerve agents Sarin (GB) and Soman (GD) (and their less reactive simulants, dimethyl methylphosphonate (DMMP)) as well as mustard (HD) in both liquid and gas phases at ambient temperature and in the absence of neutralizing bases or illumination. Three lines of evidence establish that KGeNb removes DMMP, and thus likely GB/GD, by general base catalysis: a) the k(H2 O)/k(D2 O) solvent isotope effect is 1.4; b) the rate law (hydrolysis at the same pH depends on the amount of P-PONb present); and c) hydroxide is far less active against the above simulants at the same pH than the P-PONbs themselves, a critical control experiment.

11.
ACS Appl Mater Interfaces ; 6(13): 10638-48, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24937354

ABSTRACT

Using alizarin and titanium isopropoxide, we have succeeded in preparing a hybrid form of nanostructured graphene-TiO2 following a bottom-up synthetic approach. This novel graphene-based composite offers a practical alternative to synthesizing photocatalytically active materials with maximized graphene-TiO2 interface. The molecular precursor alizarin was chosen because it efficiently binds to TiO2 through the hydroxyl groups and already possesses the graphene building block through its anthracene basis. XPS and Raman spectroscopy proved that the calcined material contained majority sp(2)-hybridized carbon that formed graphene-like clusters. XRD data showed the integrated structures maintained their anatase crystallography, therefore preserving the material's properties without going through phase transitions to rutile. The enhanced graphene and TiO2 interface was confirmed using DFT computational techniques. The photocatalytic activity of the graphene-TiO2 materials was demonstrated through degradation of methylene blue.

12.
J Phys Chem C Nanomater Interfaces ; 113(31): 13906-13917, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-20161144

ABSTRACT

Adsorption equilibria and NMR experiments were performed to study the adsorption and interactions of ammonia with metal-organic framework (MOF) HKUST-1, or Cu(3)(BTC)(2) (BTC = 1,3,5-benzenetricarboxylate). Ammonia capacities determined from chemical breakthrough measurements show significantly higher uptake capacities than from adsorption alone, suggesting a stronger interaction involving a potential reaction with the Cu(3)(BTC)(2) framework. Indeed, (1)H MAS NMR reveals that a major disruption of the relatively simple spectrum of Cu(3)(BTC)(2) occurs to generate a composite spectrum consistent with Cu(OH)(2) and (NH(4))(3)BTC species under humid conditions-the anticipated products of a copper(II) carboxylate reacted with limited ammonia. These species are not detected under dry conditions; however, reaction stoichiometry combined with XRD results suggests the partial formation of an indeterminate diammine copper (II) complex with some residual Cu(3)(BTC)(2) structure retained. Cu(II)-induced paramagnetic shifts exhibited by various species in (1)H and (13)C MAS NMR spectra are consistent with model compounds and previous literature. Although results show extensive ammonia capacity of Cu(3)(BTC)(2), much of the capacity is due to reaction with the structure itself, causing a permanent loss in porosity and structural integrity.

13.
Chem Biol Interact ; 157-158: 321-5, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16289061

ABSTRACT

Acetylcholinesterase (AChE) is an interesting research target not only because of its high enzyme catalytic rate but also because of the wide range of health effects resulting from its inhibition. This paper discusses results of a theoretical study of acetylcholinesterase inhibition using several simulation techniques. In the first technique, a novel method was developed and used for predicting the binding affinity of human AChE (huAChE) inhibitors. Results are also presented for classical molecular dynamics and quantum mechanical simulations. Theoretical proton NMR shift results are obtained and compared to experiment, and the importance of the Glu199 residue is discussed in the context of the model.


Subject(s)
Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Cholinesterases/metabolism , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/metabolism , Binding Sites , Humans , Kinetics , Ligands , Models, Biological , Thermodynamics
14.
J Phys Chem A ; 108(46): 10094-10098, 2004 Nov 18.
Article in English | MEDLINE | ID: mdl-33862675

ABSTRACT

Matrix isolation infrared spectroscopy has been combined with theoretical calculations for the characterization of the 1:1 hydrogen-bonded complex between H2O and dimethyl methylphosphonate (DMMP). The symmetric O-H stretching mode was observed to shift 203 cm-1 to lower energy upon hydrogen bond formation, while a 32 cm-1 blue shift was noted for the H-O-H bending mode of the H2O subunit in the complex. These values compare extremely well with the (unscaled) shifts of -203 and +32 cm-1, respectively, that were calculated theoretically at the MP2/6-31+G** level. Additional perturbed modes of the DMMP subunit were observed, shifted relative to the parent band position. The greatest perturbation was to the P═O stretching mode near 1270 cm-1, where a shift of -17 cm-1 was observed (-21 cm-1 calculated theoretically). This suggests that the site of hydrogen bonding in the complex is at the P═O group, in agreement with theoretical calculations. The binding energy ΔE° for the 1:1 complex was calculated to be -7.7 kcal/mol.

SELECTION OF CITATIONS
SEARCH DETAIL
...