Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Hum Behav ; 7(9): 1568-1583, 2023 09.
Article in English | MEDLINE | ID: mdl-37653148

ABSTRACT

Positive correlations between mates can increase trait variation and prevalence, as well as bias estimates from genetically informed study designs. While past studies of similarity between human mating partners have largely found evidence of positive correlations, to our knowledge, no formal meta-analysis has examined human partner correlations across multiple categories of traits. Thus, we conducted systematic reviews and random-effects meta-analyses of human male-female partner correlations across 22 traits commonly studied by psychologists, economists, sociologists, anthropologists, epidemiologists and geneticists. Using ScienceDirect, PubMed and Google Scholar, we incorporated 480 partner correlations from 199 peer-reviewed studies of co-parents, engaged pairs, married pairs and/or cohabitating pairs that were published on or before 16 August 2022. We also calculated 133 trait correlations using up to 79,074 male-female couples in the UK Biobank (UKB). Estimates of the 22 mean meta-analysed correlations ranged from rmeta = 0.08 (adjusted 95% CI = 0.03, 0.13) for extraversion to rmeta = 0.58 (adjusted 95% CI = 0.50, 0.64) for political values, with funnel plots showing little evidence of publication bias across traits. The 133 UKB correlations ranged from rUKB = -0.18 (adjusted 95% CI = -0.20, -0.16) for chronotype (being a 'morning' or 'evening' person) to rUKB = 0.87 (adjusted 95% CI = 0.86, 0.87) for birth year. Across analyses, political and religious attitudes, educational attainment and some substance use traits showed the highest correlations, while psychological (that is, psychiatric/personality) and anthropometric traits generally yielded lower but positive correlations. We observed high levels of between-sample heterogeneity for most meta-analysed traits, probably because of both systematic differences between samples and true differences in partner correlations across populations.


Subject(s)
Academic Success , Biological Specimen Banks , Female , Humans , Male , Chronotype , Educational Status , United Kingdom
2.
Dev Psychopathol ; : 1-11, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36524242

ABSTRACT

Parents share half of their genes with their children, but they also share background social factors and actively help shape their child's environment - making it difficult to disentangle genetic and environmental causes of parent-offspring similarity. While adoption and extended twin family designs have been extremely useful for distinguishing genetic and nongenetic parental influences, these designs entail stringent assumptions about phenotypic similarity between relatives and require samples that are difficult to collect and therefore are typically small and not publicly shared. Here, we describe these traditional designs, as well as modern approaches that use large, publicly available genome-wide data sets to estimate parental effects. We focus in particular on an approach we recently developed, structural equation modeling (SEM)-polygenic score (PGS), that instantiates the logic of modern PGS-based methods within the flexible SEM framework used in traditional designs. Genetically informative designs such as SEM-PGS rely on different and, in some cases, less rigid assumptions than traditional approaches; thus, they allow researchers to capitalize on new data sources and answer questions that could not previously be investigated. We believe that SEM-PGS and similar approaches can lead to improved insight into how nature and nurture combine to create the incredible diversity underlying human behavior.

3.
Nat Genet ; 54(5): 581-592, 2022 05.
Article in English | MEDLINE | ID: mdl-35534559

ABSTRACT

Estimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation (direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects). Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and within-sibship (within-family) GWAS estimates for 25 phenotypes. Within-sibship GWAS estimates were smaller than population estimates for height, educational attainment, age at first birth, number of children, cognitive ability, depressive symptoms and smoking. Some differences were observed in downstream SNP heritability, genetic correlations and Mendelian randomization analyses. For example, the within-sibship genetic correlation between educational attainment and body mass index attenuated towards zero. In contrast, analyses of most molecular phenotypes (for example, low-density lipoprotein-cholesterol) were generally consistent. We also found within-sibship evidence of polygenic adaptation on taller height. Here, we illustrate the importance of family-based GWAS data for phenotypes influenced by demographic and indirect genetic effects.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Mendelian Randomization Analysis , Multifactorial Inheritance/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics
4.
Behav Genet ; 51(3): 264-278, 2021 05.
Article in English | MEDLINE | ID: mdl-33387133

ABSTRACT

Offspring resemble their parents for both genetic and environmental reasons. Understanding the relative magnitude of these alternatives has long been a core interest in behavioral genetics research, but traditional designs, which compare phenotypic covariances to make inferences about unmeasured genetic and environmental factors, have struggled to disentangle them. Recently, Kong et al. (2018) showed that by correlating offspring phenotypic values with the measured polygenic score of parents' nontransmitted alleles, one can estimate the effect of "genetic nurture"-a type of passive gene-environment covariation that arises when heritable parental traits directly influence offspring traits. Here, we instantiate this basic idea in a set of causal models that provide novel insights into the estimation of parental influences on offspring. Most importantly, we show how jointly modeling the parental polygenic scores and the offspring phenotypes can provide an unbiased estimate of the variation attributable to the environmental influence of parents on offspring, even when the polygenic score accounts for a small fraction of trait heritability. This model can be further extended to (a) account for the influence of different types of assortative mating, (b) estimate the total variation due to additive genetic effects and their covariance with the familial environment (i.e., the full genetic nurture effect), and (c) model situations where a parental trait influences a different offspring trait. By utilizing structural equation modeling techniques developed for extended twin family designs, our approach provides a general framework for modeling polygenic scores in family studies and allows for various model extensions that can be used to answer old questions about familial influences in new ways.


Subject(s)
Maternal Inheritance/genetics , Paternal Inheritance/genetics , Statistics as Topic/methods , Alleles , Gene-Environment Interaction , Genotype , Humans , Models, Genetic , Models, Theoretical , Multifactorial Inheritance/genetics , Parent-Child Relations , Parents/psychology , Phenotype , Twins/genetics
5.
Behav Genet ; 51(3): 279-288, 2021 05.
Article in English | MEDLINE | ID: mdl-33301082

ABSTRACT

In a companion paper Balbona et al. (Behav Genet, in press), we introduced a series of causal models that use polygenic scores from transmitted and nontransmitted alleles, the offspring trait, and parental traits to estimate the variation due to the environmental influences the parental trait has on the offspring trait (vertical transmission) as well as additive genetic effects. These models also estimate and account for the gene-gene and gene-environment covariation that arises from assortative mating and vertical transmission respectively. In the current study, we simulated polygenic scores and phenotypes of parents and offspring under genetic and vertical transmission scenarios, assuming two types of assortative mating. We instantiated the models from our companion paper in the OpenMx software, and compared the true values of parameters to maximum likelihood estimates from models fitted on the simulated data to quantify the bias and precision of estimates. We show that parameter estimates from these models are unbiased when assumptions are met, but as expected, they are biased to the degree that assumptions are unmet. Standard errors of the estimated variances due to vertical transmission and to genetic effects decrease with increasing sample sizes and with increasing [Formula: see text] values of the polygenic score. Even when the polygenic score explains a modest amount of trait variation ([Formula: see text]), standard errors of these standardized estimates are reasonable ([Formula: see text]) for [Formula: see text] trios, and can even be reasonable for smaller sample sizes (e.g., down to 4K) when the polygenic score is more predictive. These causal models offer a novel approach for understanding how parents influence their offspring, but their use requires polygenic scores on relevant traits that are modestly predictive (e.g., [Formula: see text] as well as datasets with genomic and phenotypic information on parents and offspring. The utility of polygenic scores for elucidating parental influences should thus serve as additional motivation for large genomic biobanks to perform GWAS's on traits that may be relevant to parenting and to oversample close relatives, particularly parents and offspring.


Subject(s)
Maternal Inheritance/genetics , Paternal Inheritance/genetics , Statistics as Topic/methods , Alleles , Bias , Gene-Environment Interaction , Genome-Wide Association Study , Genomics , Genotype , Humans , Likelihood Functions , Models, Genetic , Models, Theoretical , Multifactorial Inheritance/genetics , Parent-Child Relations , Parenting , Phenotype , Twins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...