Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Tissue Eng Regen Med ; 8(11): 906-18, 2014 Nov.
Article in English | MEDLINE | ID: mdl-23038649

ABSTRACT

Interest is growing in the use of hydrogels as bone tissue-engineering (TE) scaffolds due to advantages such as injectability and ease of incorporation of active substances such as enzymes. Hydrogels consisting of gellan gum (GG), an inexpensive calcium-crosslinkable polysaccharide, have been applied in cartilage TE. To improve GG suitability as a material for bone TE, alkaline phosphatase (ALP), an enzyme involved in mineralization of bone by cleaving phosphate from organic phosphate, was incorporated into GG hydrogels to induce mineralization with calcium phosphate (CaP). Incorporated ALP induced formation of apatite-like material on the submicron scale within GG gels, as shown by FTIR, SEM, EDS, XRD, ICP-OES, TGA and von Kossa staining. Increasing ALP concentration increased amounts of CaP as well as stiffness. Mineralized GG was able to withstand sterilization by autoclaving, although stiffness decreased. In addition, mineralizability and stiffness of GG was enhanced by the incorporation of polydopamine (PDA). Furthermore, mineralization of GG led to enhanced attachment and vitality of cells in vitro while cytocompatibility of the mineralized gels was comparable to one of the most commonly used bone substitute materials. The results proved that ALP-mediated enzymatic mineralization of GG could be enhanced by functionalization with PDA.


Subject(s)
Bone and Bones/physiology , Calcification, Physiologic/drug effects , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Indoles/pharmacology , Polymers/pharmacology , Polysaccharides, Bacterial/pharmacology , Tissue Engineering/methods , Alkaline Phosphatase/metabolism , Bone and Bones/drug effects , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , Elastic Modulus/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Freeze Drying , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Indoles/chemistry , Male , Microscopy, Electron, Scanning , Molecular Weight , Polymers/chemistry , Spectrometry, X-Ray Emission , Spectrophotometry, Atomic , Spectroscopy, Fourier Transform Infrared , Temperature , Time Factors , X-Ray Diffraction
2.
Environ Sci Technol ; 46(2): 1178-84, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22208159

ABSTRACT

Recent studies have suggested that exposure of the freshwater invertebrate Daphnia magna to dietary Zn may selectively affect reproduction without an associated increase of whole body bioaccumulation of Zn. The aim of the current research was therefore to investigate the hypothesis that dietary Zn toxicity is the result of selective accumulation in tissues that are directly involved in reproduction. Since under field conditions simultaneous exposure to both waterborne and dietary Zn is likely to occur, it was also tested if accumulation and toxicity under combined waterborne and dietary Zn exposure is the result of interactive effects. To this purpose, D. magna was exposed during a 16-day reproduction assay to Zn following a 5 × 2 factorial design, comprising five waterborne concentrations (12, 65, 137, 207, and 281 µg Zn/L) and two dietary Zn levels (49.6 and 495.9 µg Zn/g dry wt.). Tissue-specific Zn distribution was quantified by synchrotron radiation based confocal X-ray fluorescence (XRF). It was observed that the occurrence of reproductive inhibition due to increasing waterborne Zn exposure (from 65 µg/L to 281 µg/L) was accompanied by a relative increase of the Zn burdens which was similar in all tissues considered (i.e., the carapax, eggs, thoracic appendages with gills and the cluster comprising gut epithelium, storage cells and ovaries). In contrast, the impairment of reproduction during dietary Zn exposure was accompanied by a clearly discernible Zn accumulation in the eggs only (at 65 µg/L of waterborne Zn). During simultaneous exposure, bioaccumulation and toxicity were the result of interaction, which implies that the tissue-specific bioaccumulation and toxicity following dietary Zn exposure are dependent on the Zn concentration in the water. Our findings emphasize that (i) effects of dietary Zn exposure should preferably not be investigated in isolation from waterborne Zn exposure, and that (ii) XRF enabled us to provide possible links between tissue-specific bioaccumulation and reproductive effects of Zn.


Subject(s)
Daphnia/drug effects , Daphnia/metabolism , Water Pollutants, Chemical/toxicity , Water/chemistry , Zinc/toxicity , Animals , Diet , Food Contamination , Spectrometry, X-Ray Emission , Synchrotrons , Water Pollutants, Chemical/chemistry , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...