Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 64(40): 7438-7444, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27617353

ABSTRACT

DAS-40278-9 maize, which is developed by Dow AgroSciences, has been genetically modified to express the aryloxyalkanoate dioxygenase-1 (AAD-1) protein and is tolerant to phenoxy auxin herbicides, such as 2,4-dichlorophenoxyacetic acid (2,4-D). To understand the metabolic route and residue distribution of 2,4-D in DAS-40278-9 maize, a metabolism study was conducted with 14C-radiolabeled 2,4-D applied at the maximum seasonal rate. Plants were grown in boxes outdoors. Forage and mature grain, cobs, and stover were collected for analysis. The metabolism study showed that 2,4-D was metabolized to 2,4-dichlorophenol (2,4-DCP), which was then rapidly conjugated with glucose. Field-scale residue studies with 2,4-D applied at the maximum seasonal rate were conducted at 25 sites in the U.S. and Canada to measure the residues of 2,4-D and free and conjugated 2,4-DCP in mature forage, grain, and stover. Residues of 2,4-D were not detectable in the majority of the grain samples and averaged <1.0 and <1.5 µg/g in forage and stover, respectively. Free plus conjugated 2,4-DCP was not observed in grain and averaged <1.0 µg/g in forage and stover.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/pharmacokinetics , Dioxygenases/genetics , Herbicides/pharmacokinetics , Zea mays/drug effects , Zea mays/genetics , 2,4-Dichlorophenoxyacetic Acid/metabolism , Canada , Chlorophenols/metabolism , Chlorophenols/pharmacokinetics , Herbicides/metabolism , Limit of Detection , Pesticide Residues/metabolism , Pesticide Residues/pharmacokinetics , Plants, Genetically Modified/metabolism , Seasons , United States , Zea mays/metabolism
2.
Pest Manag Sci ; 67(5): 556-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21254328

ABSTRACT

BACKGROUND: Tricyclazole is a commercial fungicide used to control rice blast. As part of re-registration activities, samples of metabolites and process impurities are required. In addition, isotopically labeled tricyclazole samples are also required. RESULTS: Four new compounds related to tricyclazole are reported. An isotopically labeled sample of tricyclazole was prepared that contained two (15)N atoms and one (13)C atom. Radiolabeled tricyclazole with (14)C at the triazole C3 position was also synthesized. A new process impurity in technical tricyclazole was identified and synthesized. A new metabolite of tricyclazole was identified, independently synthesized and characterized by X-ray crystallography. CONCLUSION: A previously unreported metabolite of tricyclazole has been identified and structurally characterized. In addition, a new process impurity has been identified by independent synthesis. Identification of these new compounds has facilitated the continued registration of this important fungicide.


Subject(s)
Fungicides, Industrial/chemical synthesis , Thiazoles/chemical synthesis , Fungicides, Industrial/chemistry , Molecular Structure , Thiazoles/chemistry
3.
J Agric Food Chem ; 50(11): 3244-56, 2002 May 22.
Article in English | MEDLINE | ID: mdl-12009994

ABSTRACT

Spinosad is a bacterially derived insect control agent consisting of two active compounds, spinosyns A and D. The objective of this paper is to describe the environmental fate of spinosad in aquatic systems. To this end, several studies performed to meet regulatory requirements are used to study the fate and degradation in individual environmental media. Specifically, investigations of abiotic (hydrolysis and photolysis) and biotic (aerobic and anaerobic aquatic) processes are described. Understanding developed from the laboratory-based studies has been tested and augmented by an outdoor microcosm study. Understanding of aquatic fate is a building block for a complete environmental safety assessment of spinosad products (Cleveland, C. B.; Mayes, M. A.; Cryer, S. A. Pest Manag. Sci. 2001, 58, 70-84). From individual investigations, the following understanding of dissipation emerges: (1) Aqueous photolysis of spinosad is rapid (observed half-lives of <1 up to 2 days in summer sunlight) and will be the primary route of degradation in aquatic systems exposed to sunlight. (2) Biotic transformations contribute to spinosad's dissipation, but less so than photolysis; they will be of primary importance only in the absence of light. (3) Spinosad partitions rapidly (within a few days) from water to organic matter and soil/sediment in aquatic systems but not so rapidly as to replace sunlight as the primary route of dissipation. (4) Abiotic hydrolysis is relatively unimportant compared to other dissipation routes, except under highly basic (artificial) conditions and even then observed half-lives are approximately 8 months. Degradation pathways are understood are follows: (1) Degradation primarily proceeds by loss of the forosamine sugar and reduction of the 13,14-bond on the macrolide ring under aqueous photolytic conditions. (2) Degradation to several other compounds occurs through biotic degradation. Degradation under anaerobic conditions primarily involves changes and substitutions in the rhamnose ring, eventually followed by complete loss of the rhamnose ring. Degradation under aerobic conditions was more extensive (to smaller compounds) with the loss of both the forosamine and rhamnose sugars to diketone spinosyn aglycon degradates. (3) Hydrolytic degradation involves loss of the forosamine sugar and water and reduction on the macrolide ring to a double bond at the 16,17-position.


Subject(s)
Insecticides/chemistry , Macrolides/chemistry , Water/chemistry , Aerobiosis , Anaerobiosis , Chromatography, High Pressure Liquid , Drug Combinations , Hexosamines/chemistry , Hydrolysis , Magnetic Resonance Spectroscopy , Mass Spectrometry , Photolysis , Rhamnose/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...