Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445805

ABSTRACT

Over the last decade, CDK4/6 inhibitors (palbociclib, ribociclib and abemaciclib) have emerged as promising anticancer drugs. Numerous studies have demonstrated that CDK4/6 inhibitors efficiently block the pRb-E2F pathway and induce cell cycle arrest in pRb-proficient cells. Based on these studies, the inhibitors have been approved by the FDA for treatment of advanced hormonal receptor (HR) positive breast cancers in combination with hormonal therapy. However, some evidence has recently shown unexpected effects of the inhibitors, underlining a need to characterize the effects of CDK4/6 inhibitors beyond pRb. Our study demonstrates how palbociclib impairs origin firing in the DNA replication process in pRb-deficient cell lines. Strikingly, despite the absence of pRb, cells treated with palbociclib synthesize less DNA while showing no cell cycle arrest. Furthermore, this CDK4/6 inhibitor treatment disturbs the temporal program of DNA replication and reduces the density of replication forks. Cells treated with palbociclib show a defect in the loading of the Pre-initiation complex (Pre-IC) proteins on chromatin, indicating a reduced initiation of DNA replication. Our findings highlight hidden effects of palbociclib on the dynamics of DNA replication and of its cytotoxic consequences on cell viability in the absence of pRb. This study provides a potential therapeutic application of palbociclib in combination with other drugs to target genomic instability in pRB-deficient cancers.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Replication Origin , Protein Kinase Inhibitors/therapeutic use , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase Inhibitor Proteins , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
2.
EMBO J ; 40(21): e104543, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34533226

ABSTRACT

The DNA polymerase zeta (Polζ) plays a critical role in bypassing DNA damage. REV3L, the catalytic subunit of Polζ, is also essential in mouse embryonic development and cell proliferation for reasons that remain incompletely understood. In this study, we reveal that REV3L protein interacts with heterochromatin components including repressive histone marks and localizes in pericentromeric regions through direct interaction with HP1 dimer. We demonstrate that Polζ/REV3L ensures progression of replication forks through difficult-to-replicate pericentromeric heterochromatin, thereby preventing spontaneous chromosome break formation. We also find that Rev3l-deficient cells are compromised in the repair of heterochromatin-associated double-stranded breaks, eliciting deletions in late-replicating regions. Lack of REV3L leads to further consequences that may be ascribed to heterochromatin replication and repair-associated functions of Polζ, with a disruption of the temporal replication program at specific loci. This is correlated with changes in epigenetic landscape and transcriptional control of developmentally regulated genes. These results reveal a new function of Polζ in preventing chromosome instability during replication of heterochromatic regions.


Subject(s)
DNA Replication , DNA-Binding Proteins/genetics , DNA-Directed DNA Polymerase/genetics , DNA/genetics , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Heterochromatin/metabolism , Animals , Cell Line , Cell Line, Transformed , Cell Proliferation , Chromobox Protein Homolog 5/genetics , Chromobox Protein Homolog 5/metabolism , Chromosomal Instability , DNA/metabolism , DNA Breaks, Double-Stranded , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/metabolism , Embryo, Mammalian , Embryonic Stem Cells/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation, Developmental , HeLa Cells , Heterochromatin/chemistry , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , NIH 3T3 Cells , Signal Transduction
3.
NAR Genom Bioinform ; 2(2): lqaa045, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33575597

ABSTRACT

DNA replication must be faithful and follow a well-defined spatiotemporal program closely linked to transcriptional activity, epigenomic marks, intranuclear structures, mutation rate and cell fate determination. Among the readouts of the spatiotemporal program of DNA replication, replication timing analyses require not only complex and time-consuming experimental procedures, but also skills in bioinformatics. We developed a dedicated Shiny interactive web application, the START-R (Simple Tool for the Analysis of the Replication Timing based on R) suite, which analyzes DNA replication timing in a given organism with high-throughput data. It reduces the time required for generating and analyzing simultaneously data from several samples. It automatically detects different types of timing regions and identifies significant differences between two experimental conditions in ∼15 min. In conclusion, START-R suite allows quick, efficient and easier analyses of DNA replication timing for all organisms. This novel approach can be used by every biologist. It is now simpler to use this method in order to understand, for example, whether 'a favorite gene or protein' has an impact on replication process or, indirectly, on genomic organization (as Hi-C experiments), by comparing the replication timing profiles between wild-type and mutant cell lines.

4.
J Natl Cancer Inst ; 111(6): 597-608, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30779852

ABSTRACT

BACKGROUND: Cancer cells from different origins exhibit various basal redox statuses and thus respond differently to intrinsic or extrinsic oxidative stress. These intricate characteristics condition the success of redox-based anticancer therapies that capitalize on the ability of reactive oxygen species to achieve selective and efficient cancer cell killing. METHODS: Redox biology methods, stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics, and bioinformatics pattern comparisons were used to decipher the underlying mechanisms for differential response of lung and breast cancer cell models to redox-modulating molecule auranofin (AUF) and to combinations of AUF and vitamin C (VC). The in vivo effect of AUF, VC, and two AUF/VC combinations on mice bearing MDA-MB-231 xenografts (n = 5 mice per group) was also evaluated. All statistical tests were two-sided. RESULTS: AUF targeted simultaneously the thioredoxin and glutathione antioxidant systems. AUF/VC combinations exerted a synergistic and hydrogen peroxide (H2O2)-mediated cytotoxicity toward MDA-MB-231 cells and other breast cancer cell lines. The anticancer potential of AUF/VC combinations was validated in vivo on MDA-MB-231 xenografts in mice without notable side effects. On day 14 of treatments, mean (SD) tumor volumes for the vehicle-treated control group and the two AUF/VC combination-treated groups (A/V1 and A/V2) were 197.67 (24.28) mm3, 15.66 (10.90) mm3, and 10.23 (7.30)mm3, respectively; adjusted P values of the differences between mean tumor volumes of vehicle vs A/V1 groups and vehicle vs A/V2 groups were both less than .001. SILAC proteomics, bioinformatics analysis, and functional experiments linked prostaglandin reductase 1 (PTGR1) expression levels with breast cancer cell sensitivity to AUF/VC combinations. CONCLUSION: The combination of AUF and VC, two commonly available drugs, could be efficient against triple-negative breast cancer and potentially other cancers with similar redox properties and PTGR1 expression levels. The redox-based anticancer activity of this combination and the discriminatory potential of PTGR1 expression are worth further assessment in preclinical and clinical studies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Triple Negative Breast Neoplasms/drug therapy , A549 Cells , Animals , Ascorbic Acid/administration & dosage , Auranofin/administration & dosage , Cell Line, Tumor , Female , Glutathione/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Mice , Oxidative Stress/drug effects , Proteome/metabolism , Random Allocation , Triple Negative Breast Neoplasms/metabolism , Xenograft Model Antitumor Assays
5.
J Natl Cancer Inst ; 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30462268

ABSTRACT

BACKGROUND: Cancer cells from different origins exhibit various basal redox statuses and thus respond differently to intrinsic or extrinsic oxidative stress. These intricate characteristics condition the success of redox-based anticancer therapies that capitalize on the ability of reactive oxygen species to achieve selective and efficient cancer cell killing. METHODS: Redox biology methods, stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics, and bioinformatics pattern comparisons were used to decipher the underlying mechanisms for differential response of lung and breast cancer cell models to redox-modulating molecule auranofin (AUF) and to combinations of AUF and vitamin C (VC). The in vivo effect of AUF, VC, and two AUF/VC combinations on mice bearing MDA-MB-231 xenografts (n = 5 mice per group) was also evaluated. All statistical tests were two-sided. RESULTS: AUF targeted simultaneously the thioredoxin and glutathione antioxidant systems. AUF/VC combinations exerted a synergistic and hydrogen peroxide (H2O2)-mediated cytotoxicity toward MDA-MB-231 cells and other breast cancer cell lines. The anticancer potential of AUF/VC combinations was validated in vivo on MDA-MB-231 xenografts in mice without notable side effects. On day 14 of treatments, mean (SD) tumor volumes for the vehicle-treated control group and the two AUF/VC combination-treated groups (A/V1 and A/V2) were 197.67 (24.28) mm3, 15.66 (10.90) mm3, and 10.23 (7.30)mm3, respectively; adjusted P values of the differences between mean tumor volumes of vehicle vs A/V1 groups and vehicle vs A/V2 groups were both less than .001. SILAC proteomics, bioinformatics analysis, and functional experiments linked prostaglandin reductase 1 (PTGR1) expression levels with breast cancer cell sensitivity to AUF/VC combinations. CONCLUSION: The combination of AUF and VC, two commonly available drugs, could be efficient against triple-negative breast cancer and potentially other cancers with similar redox properties and PTGR1 expression levels. The redox-based anticancer activity of this combination and the discriminatory potential of PTGR1 expression are worth further assessment in preclinical and clinical studies.

6.
Aging (Albany NY) ; 9(12): 2695-2716, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29283884

ABSTRACT

High proliferation rate and high mutation density are both indicators of poor prognosis in adrenocortical carcinomas. We performed a hypothesis-driven association study between clinical features in adrenocortical carcinomas and the expression levels of 136 genes involved in DNA metabolism and G1/S phase transition. In 79 samples downloaded from The Cancer Genome Atlas portal, high Cyclin Dependent Kinase 6 (CDK6) mRNA levels gave the most significant association with shorter time to relapse and poorer survival of patients. A hierarchical clustering approach assembled most tumors with high levels of CDK6 mRNA into one group. These tumors tend to cumulate mutations activating the Wnt/ß-catenin pathway and show reduced MIR506 expression. Actually, the level of MIR506 RNA is inversely correlated with the levels of both CDK6 and CTNNB1 (encoding ß-catenin). Together these results indicate that high CDK6 expression is found in aggressive tumors with activated Wnt/ß-catenin pathway. Thus we tested the impact of Food and Drug Administration-approved CDK4 and CDK6 inhibitors, namely palbociclib and ribociclib, on SW-13 and NCI-H295R cells. While both drugs reduced viability and induced senescence in SW-13 cells, only palbociclib was effective on the retinoblastoma protein (pRB)-negative NCI-H295R cells, by inducing apoptosis. In NCI-H295R cells, palbociclib induced an increase of the active form of Glycogen Synthase Kinase 3ß (GSK3ß) responsible for the reduced amount of active ß-catenin, and altered the amount of AXIN2 mRNA. Taken together, these data underline the impact of CDK4 and CDK6 inhibitors in treating adrenocortical carcinomas.


Subject(s)
Adrenal Cortex Neoplasms/genetics , Adrenocortical Carcinoma/genetics , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Piperazines/pharmacology , Pyridines/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , Humans , Protein Kinase Inhibitors/pharmacology , Transcriptome
7.
EMBO J ; 36(18): 2726-2741, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28778956

ABSTRACT

Among other targets, the protein lysine methyltransferase PR-Set7 induces histone H4 lysine 20 monomethylation (H4K20me1), which is the substrate for further methylation by the Suv4-20h methyltransferase. Although these enzymes have been implicated in control of replication origins, the specific contribution of H4K20 methylation to DNA replication remains unclear. Here, we show that H4K20 mutation in mammalian cells, unlike in Drosophila, partially impairs S-phase progression and protects from DNA re-replication induced by stabilization of PR-Set7. Using Epstein-Barr virus-derived episomes, we further demonstrate that conversion of H4K20me1 to higher H4K20me2/3 states by Suv4-20h is not sufficient to define an efficient origin per se, but rather serves as an enhancer for MCM2-7 helicase loading and replication activation at defined origins. Consistent with this, we find that Suv4-20h-mediated H4K20 tri-methylation (H4K20me3) is required to sustain the licensing and activity of a subset of ORCA/LRWD1-associated origins, which ensure proper replication timing of late-replicating heterochromatin domains. Altogether, these results reveal Suv4-20h-mediated H4K20 tri-methylation as a critical determinant in the selection of active replication initiation sites in heterochromatin regions of mammalian genomes.


Subject(s)
DNA Replication , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Lysine/metabolism , Protein Processing, Post-Translational , Humans , Methylation
8.
Genom Data ; 9: 113-7, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27508120

ABSTRACT

During the S-phase, the DNA replication process is finely orchestrated and regulated by two programs: the spatial program that determines where replication will start in the genome (Cadoret et al. (2008 Oct 14), Cayrou et al. (2011 Sep), Picard et al. (2014 May 1) [1], [2], [3]), and the temporal program that determines when during the S phase different parts of the genome are replicated and when origins are activated. The temporal program is so well conserved for each cell type from independent individuals [4] that it is possible to identify a cell type from an unknown sample just by determining its replication timing program. Moreover, replicative domains are strongly correlated with the partition of the genome into topological domains (determined by the Hi-C method, Lieberman-Aiden et al. (2009 Oct 9), Pope et al. (2014 Nov 20) [5], [6]). On the one hand, replicative areas are well defined and participate in shaping the spatial organization of the genome for a given cell type. On the other hand, studies on the timing program during cell differentiation showed a certain plasticity of this program according to the stage of cell differentiation Hiratani et al. (2008 Oct 7, 2010 Feb) [7], [8]. Domains where a replication timing change was observed went through a nuclear re-localization. Thus the temporal program of replication can be considered as an epigenetic mark Hiratani and Gilbert (2009 Feb 16) [9]. We present the genomic data of replication timing in 6 human model cell lines: U2OS (GSM2111308), RKO (GSM2111309), HEK 293T (GSM2111310), HeLa (GSM2111311), MRC5-SV (GSM2111312) and K562 (GSM2111313). A short comparative analysis was performed that allowed us to define regions common to the 6 cell lines. These replication timing data can be taken into account when performing studies that use these model cell lines.

9.
Genom Data ; 3: 90-3, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26484154

ABSTRACT

The physiological function of the human DNA polymerase θ (pol θ) is still unclear despite its in vitro translesion synthesis capacity during DNA damage repair process. However this DNA polymerase is always present along the cell cycle in the absence of replication stress and DNA damage. Is there a different molecular function? We present the genomic data of replication timing in depleted pol θ cells (GSE49693) and in cells overexpressing pol θ (GSE53070) indicating that Pol θ holds a novel role in the absence of external stress as a critical determinant of the replication timing program in human cells.

10.
Nat Commun ; 5: 4285, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24989122

ABSTRACT

Although DNA polymerase θ (Pol θ) is known to carry out translesion synthesis and has been implicated in DNA repair, its physiological function under normal growth conditions remains unclear. Here we present evidence that Pol θ plays a role in determining the timing of replication in human cells. We find that Pol θ binds to chromatin during early G1, interacts with the Orc2 and Orc4 components of the Origin recognition complex and that the association of Mcm proteins with chromatin is enhanced in G1 when Pol θ is downregulated. Pol θ-depleted cells exhibit a normal density of activated origins in S phase, but early-to-late and late-to-early shifts are observed at a number of replication domains. Pol θ overexpression, on the other hand, causes delayed replication. Our results therefore suggest that Pol θ functions during the earliest steps of DNA replication and influences the timing of replication initiation.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase/metabolism , G1 Phase , Cell Cycle Proteins/metabolism , Cell Line , Chromatin/metabolism , Humans , Minichromosome Maintenance Proteins/metabolism , Origin Recognition Complex/metabolism , S Phase , DNA Polymerase theta
11.
PLoS One ; 8(10): e76140, 2013.
Article in English | MEDLINE | ID: mdl-24124537

ABSTRACT

The ubiquitin proteasome system and macroautophagy are proteolytic pathways essential in the maintenance of cellular homeostasis during differentiation and remodelling of skeletal muscle. In both pathways, proteins to be degraded are tagged with polyubiquitin. In skeletal muscles, the MURF2 proteins display E3 ubiquitin ligase structure suggesting that they may covalently attach ubiquitin polypeptides to still unknown target proteins. So far only MURF2A isoforms were studied and shown to interact with p62/SQSTM1, a protein implicated in macroautophagic and ubiquitin proteasome system degradations. Here, we analyzed the MURF2B and MURF2A proteins and show that the ratio of the isoforms changes during differentiation of muscle C2C12 cells and that the shift of the isoforms expression follows the sequential activation of autophagic or proteasomal degradation. We also show that MURF2B has a functional domain needed for its interaction with LC3, a protein needed for autophagic vesicles formation. Using specific MURF2 RNAi cells we observed that MURF2A and MURF2B are both needed for the formation of autophagosomes and that in the absence of MURF2B, the cells expressing MURF2A display an activated ubiquitin proteasome system implicated in the degradation of p62/SQSTM1 by UPS. Altogether, our results indicate that MURF2A and MURF2B proteins could participate in the molecular switch between the two ubiquitin degradative pathways.


Subject(s)
Autophagy/physiology , Muscle Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Animals , Autophagy/genetics , Cell Differentiation/physiology , Cell Line , Mice , Muscle Proteins/genetics , Phagosomes/metabolism , Proteasome Endopeptidase Complex/genetics , RNA Interference
12.
FEBS J ; 279(12): 2108-19, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22487307

ABSTRACT

Yeast Dre2 is an essential Fe-S cluster-containing protein that has been implicated in cytosolic Fe-S protein biogenesis and in cell death regulation in response to oxidative stress. Its absence in yeast can be complemented by the human homologous antiapoptotic protein cytokine-induced apoptosis inhibitor 1 (also known as anamorsin), suggesting at least one common function. Using complementary techniques, we have investigated the biochemical and biophysical properties of Dre2. We show that it contains an N-terminal domain whose structure in solution consists of a stable well-structured monomer with an overall typical S-adenosylmethionine methyltransferase fold lacking two α-helices and a ß-strand. The highly conserved C-terminus of Dre2, containing two Fe-S clusters, influences the flexibility of the N-terminal domain. We discuss the hypotheses that the activity of the N-terminal domain could be modulated by the redox activity of Fe-S clusters containing the C-terminus domain in vivo.


Subject(s)
Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Amino Acid Sequence , Iron-Sulfur Proteins/genetics , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Protein Structure, Secondary , Saccharomyces cerevisiae Proteins/genetics , Sequence Homology, Amino Acid
13.
Mol Biol Int ; 2011: 213824, 2011.
Article in English | MEDLINE | ID: mdl-22096622

ABSTRACT

Instability of repetitive sequences originates from strand misalignment during repair or replicative DNA synthesis. To investigate the activity of reconstituted T4 replisomes across trinucleotide repeats (TNRs) during leading strand DNA synthesis, we developed a method to build replication miniforks containing a TNR unit of defined sequence and length. Each minifork consists of three strands, primer, leading strand template, and lagging strand template with a 5' single-stranded (ss) tail. Each strand is prepared independently, and the minifork is assembled by hybridization of the three strands. Using these miniforks and a minimal reconstituted T4 replisome, we show that during leading strand DNA synthesis, the dNTP concentration dictates which strand of the structure-forming 5'CAG/5'CTG repeat creates the strongest impediment to the minimal replication complex. We discuss this result in the light of the known fluctuation of dNTP concentration during the cell cycle and cell growth and the known concentration balance among individual dNTPs.

14.
Mol Microbiol ; 82(1): 54-67, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21902732

ABSTRACT

Tah18-Dre2 is a recently identified yeast protein complex, which is highly conserved in human and has been implicated in the regulation of oxidative stress induced cell death and in cytosolic Fe-S proteins synthesis. Tah18 is a diflavin oxido-reductase with binding sites for flavin mononucleotide, flavin adenine dinucleotide and nicotinamide adenine dinucleotide phosphate, which is able to transfer electrons to Dre2 Fe-S clusters. In this work we characterized in details the interaction between Tah18 and Dre2, and analysed how it conditions yeast viability. We show that Dre2 C-terminus interacts in vivo and in vitro with the flavin mononucleotide- and flavin adenine dinucleotide-binding sites of Tah18. Neither the absence of the electron donor nicotinamide adenine dinucleotide phosphate-binding domain in purified Tah18 nor the absence of Fe-S in aerobically purified Dre2 prevents the binding in vitro. In vivo, when this interaction is affected in a dre2 mutant, yeast viability is reduced. Conversely, enhancing artificially the interaction between mutated Dre2 and Tah18 restores cellular viability despite still reduced cytosolic Fe-S cluster biosynthesis. We conclude that Tah18-Dre2 interaction in vivo is essential for yeast viability. Our study may provide new insight into the survival/death switch involving this complex in yeast and in human cells.


Subject(s)
Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Microbial Viability , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Flavin Mononucleotide/metabolism , Flavin-Adenine Dinucleotide/metabolism , Iron-Sulfur Proteins/genetics , Oxidoreductases/genetics , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics
15.
Biochemistry ; 50(6): 932-44, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21189045

ABSTRACT

Single-stranded DNA binding (SSB) proteins are essential proteins of DNA metabolism. We characterized the binding of the bacteriophage T4 SSB, Escherichia coli SSB, human replication protein A (hRPA), and human hSSB1 proteins onto model miniforks and double-stranded-single-stranded (ds-ss) junctions exposing 3' or 5' ssDNA overhangs. T4 SSB proteins, E. coli SSB proteins, and hRPA have a different binding preference for the ss tail exposed on model miniforks and ds-ss junctions. The T4 SSB protein preferentially binds substrates with 5' ss tails, whereas the E. coli SSB protein and hRPA show a preference for substrates with 3' ss overhangs. When interacting with ds-ss junctions or miniforks, the T4 SSB protein, E. coli SSB protein, and hRPA can destabilize not only the ds part of a ds-ss junction but also the daughter ds arm of a minifork. The T4 SSB protein displays these unwinding activities in a polar manner. Taken together, our results position the SSB protein as a potential key player in the reversal of a stalled replication fork and in gap repair-mediated repetitive sequence expansion.


Subject(s)
DNA-Binding Proteins/chemistry , DNA/chemistry , Binding Sites , DNA/biosynthesis , DNA/metabolism , DNA-Binding Proteins/metabolism , Escherichia coli/metabolism , Humans , Kinetics , Mitochondrial Proteins , Models, Biological , Protein Binding , Replication Protein A/chemistry , Replication Protein A/metabolism
16.
Mol Cell ; 39(3): 346-59, 2010 Aug 13.
Article in English | MEDLINE | ID: mdl-20705238

ABSTRACT

Template switching induced by stalled replication forks has recently been proposed to underlie complex genomic rearrangements. However, the resulting models are not supported by robust physical evidence. Here, we analyzed replication and recombination intermediates in a well-defined fission yeast system that blocks replication forks. We show that, in response to fork arrest, chromosomal rearrangements result from Rad52-dependent nascent strand template exchange occurring during fork restart. This template exchange occurs by both Rad51-dependent and -independent mechanisms. We demonstrate that Rqh1, the BLM homolog, limits Rad51-dependent template exchange without affecting fork restart. In contrast, we report that the Srs2 helicase promotes both fork restart and template exchange. Our data demonstrate that template exchange occurs during recombination-dependent fork restart at the expense of genome rearrangements.


Subject(s)
DNA Replication/physiology , DNA, Fungal/biosynthesis , Genome, Fungal/physiology , Recombination, Genetic/physiology , Schizosaccharomyces/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA, Fungal/genetics , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
17.
Genes Dev ; 23(24): 2876-86, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-20008937

ABSTRACT

Gene amplification plays important roles in the progression of cancer and contributes to acquired drug resistance during treatment. Amplification can initiate via dicentric palindromic chromosome production and subsequent breakage-fusion-bridge cycles. Here we show that, in fission yeast, acentric and dicentric palindromic chromosomes form by homologous recombination protein-dependent fusion of nearby inverted repeats, and that these fusions occur frequently when replication forks arrest within the inverted repeats. Genetic and molecular analyses suggest that these acentric and dicentric palindromic chromosomes arise not by previously described mechanisms, but by a replication template exchange mechanism that does not involve a DNA double-strand break. We thus propose an alternative mechanism for the generation of palindromic chromosomes dependent on replication fork arrest at closely spaced inverted repeats.


Subject(s)
Chromosomes, Fungal/genetics , DNA Replication/genetics , DNA, Fungal/genetics , Inverted Repeat Sequences/genetics , Schizosaccharomyces/genetics
18.
PLoS Genet ; 5(6): e1000524, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19543365

ABSTRACT

Peroxiredoxins (Prxs) constitute a family of thiol-specific peroxidases that utilize cysteine (Cys) as the primary site of oxidation during the reduction of peroxides. To gain more insight into the physiological role of the five Prxs in budding yeast Saccharomyces cerevisiae, we performed a comparative study and found that Tsa1 was distinguished from the other Prxs in that by itself it played a key role in maintaining genome stability and in sustaining aerobic viability of rad51 mutants that are deficient in recombinational repair. Tsa2 and Dot5 played minor but distinct roles in suppressing the accumulation of mutations in cooperation with Tsa1. Tsa2 was capable of largely complementing the absence of Tsa1 when expressed under the control of the Tsa1 promoter. The presence of peroxidatic cysteine (Cys(47)) was essential for Tsa1 activity, while Tsa1(C170S) lacking the resolving Cys was partially functional. In the absence of Tsa1 activity (tsa1 or tsa1(CCS) lacking the peroxidatic and resolving Cys) and recombinational repair (rad51), dying cells displayed irregular cell size/shape, abnormal cell cycle progression, and significant increase of phosphatidylserine externalization, an early marker of apoptosis-like cell death. The tsa1(CCS) rad51- or tsa1 rad51-induced cell death did not depend on the caspase Yca1 and Ste20 kinase, while the absence of the checkpoint protein Rad9 accelerated the cell death processes. These results indicate that the peroxiredoxin Tsa1, in cooperation with appropriate DNA repair and checkpoint mechanisms, acts to protect S. cerevisiae cells against toxic levels of DNA damage that occur during aerobic growth.


Subject(s)
Down-Regulation , Genomic Instability , Peroxidases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , DNA Repair , Peroxidases/genetics , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/genetics
19.
PLoS One ; 4(2): e4376, 2009.
Article in English | MEDLINE | ID: mdl-19194512

ABSTRACT

A mutated allele of the essential gene TAH18 was previously identified in our laboratory in a genetic screen for new proteins interacting with the DNA polymerase delta in yeast [1]. The present work shows that Tah18 plays a role in response to oxidative stress. After exposure to lethal doses of H(2)O(2), GFP-Tah18 relocalizes to the mitochondria and controls mitochondria integrity and cell death. Dre2, an essential Fe/S cluster protein and homologue of human anti-apoptotic Ciapin1, was identified as a molecular partner of Tah18 in the absence of stress. Moreover, Ciapin1 is able to replace yeast Dre2 in vivo and physically interacts with Tah18. Our results are in favour of an oxidative stress-induced cell death in yeast that involves mitochondria and is controlled by the newly identified Dre2-Tah18 complex.


Subject(s)
Iron-Sulfur Proteins/metabolism , Mitochondria/metabolism , Oxidative Stress , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Gene Deletion , Gene Dosage/drug effects , Genes, Suppressor , Green Fluorescent Proteins/metabolism , Humans , Hydrogen Peroxide/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Iron-Sulfur Proteins/chemistry , Microbial Viability/drug effects , Mitochondria/drug effects , Molecular Sequence Data , Mutagens/pharmacology , Mutant Proteins/metabolism , Oxidative Stress/drug effects , Protein Binding/drug effects , Protein Transport/drug effects , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Temperature
20.
J Biol Chem ; 283(19): 13341-56, 2008 May 09.
Article in English | MEDLINE | ID: mdl-18263578

ABSTRACT

Small insertions and deletions of trinucleotide repeats (TNRs) can occur by polymerase slippage and hairpin formation on either template or newly synthesized strands during replication. Although not predicted by a slippage model, deletions occur preferentially when 5'-CTG is in the lagging strand template and are highly favored over insertion events in rapidly replicating cells. The mechanism for the deletion bias and the orientation dependence of TNR instability is poorly understood. We report here that there is an orientation-dependent impediment to polymerase progression on 5'-CAG and 5'-CTG repeats that can be relieved by the binding of single-stranded DNA-binding protein. The block depends on the primary sequence of the TNR but does not correlate with the thermodynamic stability of hairpins. The orientation-dependent block of polymerase passage is the strongest when 5'-CAG is the template. We propose a "template-push" model in which the slow speed of DNA polymerase across the 5'-CAG leading strand template creates a threat to helicase-polymerase coupling. To prevent uncoupling, the TNR template is pushed out and by-passed. Hairpins do not cause the block, but appear to occur as a consequence of polymerase pass-over.


Subject(s)
DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA/biosynthesis , DNA-Binding Proteins/genetics , Escherichia coli , Gene Deletion , Transcription, Genetic/genetics , Trinucleotide Repeats/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...