Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Curr Microbiol ; 81(6): 144, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630311

ABSTRACT

A group of Gram-negative plant-associated diazotrophic bacteria belonging to the genus Nitrospirillum was investigated, including both previously characterized and newly isolated strains from diverse regions and biomes, predominantly in Brazil. Phylogenetic analysis of 16S rRNA and recA genes revealed the formation of a distinct clade consisting of thirteen strains, separate from the formally recognized species N. amazonense (the closest species) and N. iridis. Comprehensive taxonomic analyses using the whole genomes of four strains (BR 11140T = AM 18T = Y-2T = DSM 2788T = ATCC 35120T, BR 11142T = AM 14T = Y-1T = DSM 2787T = ATCC 35119T, BR 11145 = CBAmC, and BR 12005) supported the division of these strains into two species: N. amazonense (BR 11142 T and BR 12005) and a newly proposed species (BR 11140 T and BR 11145), distinct from N. iridis. The phylogenomic analysis further confirmed the presence of the new Nitrospirillum species. Additionally, MALDI-TOF MS analysis of whole-cell mass spectra provided further evidence for the differentiation of the proposed Nitrospirillum species, separate from N. amazonense. Analysis of chemotaxonomy markers (i.e., genes involved in fatty acid synthesis, metabolism and elongation, phospholipid synthesis, and quinone synthesis) revealed that the new species highlights high similarity and evolutionary convergence with other Nitrospirillum species. This new species exhibited nitrogen fixation ability in vitro, it has similar NifHDK protein phylogeny position with the closest species, lacked denitrification capability, but possessed the nosZ gene, enabling N2O reduction, distinguishing it from the closest species. Despite being isolated from diverse geographic regions, soil types, and ecological niches, no significant phenotypic or physiological differences were observed between the proposed new species and N. amazonense. Based on these findings, a new species, Nitrospirillum viridazoti sp. nov., was classified, with the strain BR 11140T (DSM 2788T, ATCC 35120T) designated as the type strain.


Subject(s)
Nitrogen , Poaceae , Phylogeny , RNA, Ribosomal, 16S/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
Plants (Basel) ; 12(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37765372

ABSTRACT

As agricultural practices become more sustainable, adopting more sustainable practices will become even more relevant. Searching for alternatives to chemical compounds has been the focus of numerous studies, and bacteriocins are tools with intrinsic biotechnological potential for controlling plant diseases. We continued to explore the biotechnological activity of the bacteriocin Gluconacin from Gluconacetobacter diazotrophicus, PAL5 strain, by investigating this protein's antagonism against important tomato phytopathogens and demonstrating its effectiveness in reducing bacterial spots caused by Xanthomonas perforans. In addition to this pathogen, the bacteriocin Gluconacin demonstrated bactericidal activity in vitro against Ralstonia solanacearum and Pseudomonas syringae pv. tomato, agents that cause bacterial wilt and bacterial spots, respectively. Bacterial spot control tests showed that Gluconacin reduced disease severity by more than 66%, highlighting the biotechnological value of this peptide in ecologically correct formulations.

3.
Int J Mol Sci ; 23(15)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35955667

ABSTRACT

Gluconacetobacter diazotrophicus has been the focus of several studies aiming to understand the mechanisms behind this endophytic diazotrophic bacterium. The present study is the first global analysis of the early transcriptional response of exponentially growing G. diazotrophicus to iron, an essential cofactor for many enzymes involved in various metabolic pathways. RNA-seq, targeted gene mutagenesis and computational motif discovery tools were used to define the G. diazotrophicusfur regulon. The data analysis showed that genes encoding functions related to iron homeostasis were significantly upregulated in response to iron limitations. Certain genes involved in secondary metabolism were overexpressed under iron-limited conditions. In contrast, it was observed that the expression of genes involved in Fe-S cluster biosynthesis, flagellar biosynthesis and type IV secretion systems were downregulated in an iron-depleted culture medium. Our results support a model that controls transcription in G. diazotrophicus by fur function. The G. diazotrophicusfur protein was able to complement an E. colifur mutant. These results provide new insights into the effects of iron on the metabolism of G. diazotrophicus, as well as demonstrate the essentiality of this micronutrient for the main characteristics of plant growth promotion by G. diazotrophicus.


Subject(s)
Gluconacetobacter , Iron , Bacterial Proteins/metabolism , Culture Media/pharmacology , Iron/metabolism , Transcriptome
4.
Plants (Basel) ; 11(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35956449

ABSTRACT

Sugarcane is an economically important crop that is used for the production of fuel ethanol. Diazotrophic bacteria have been isolated from sugarcane tissues, without causing visible plant anatomical changes or disease symptoms. These bacteria can be beneficial to the plant by promoting root growth and an increase in plant yield. Different rates of Biological Nitrogen Fixation (BNF) were observed in different genotypes. The aim of this work was to conduct a comprehensive molecular and physiological analysis of two model genotypes for contrasting BNF efficiency in order to unravel plant genes that are differentially regulated during a natural association with diazotrophic bacteria. A next-generation sequencing of RNA samples from the genotypes SP70-1143 (high-BNF) and Chunee (low-BNF) was performed. A differential transcriptome analysis showed that several pathways were differentially regulated among the two BNF-contrasting genotypes, including nitrogen metabolism, hormone regulation and bacteria recognition. Physiological analyses, such as nitrogenase and GS activity quantification, bacterial colonization, auxin response and root architecture evaluation, supported the transcriptome expression analyses. The differences observed between the genotypes may explain, at least in part, the differences in BNF contributions. Some of the identified genes might be involved in key regulatory processes for a beneficial association and could be further used as tools for obtaining more efficient BNF genotypes.

5.
Life (Basel) ; 11(11)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34833106

ABSTRACT

The biosynthesis of exopolysaccharides (EPSs) is essential for endophytic bacterial colonisation in plants bacause this exopolymer both protects bacterial cells against the defence and oxidative systems of plants and acts on the plant colonisation mechanism in Gluconacetobacter diazotrophicus. The pathway involved in the biosynthesis of bacterial EPS has not been fully elucidated, and several areas related to its molecular regulation mechanisms are still lacking. G. diazotrophicus relies heavily on EPS for survival indirectly by protecting plants from pathogen attack as well as for endophytic maintenance and adhesion in plant tissues. Here, we report that EPS from G. diazotrophicus strain Pal5 is a signal polymer that controls its own biosynthesis. EPS production depends on a bacterial tyrosine (BY) kinase (Wzc) that consists of a component that is able to phosphorylate a glycosyltranferase or to self-phosphorylate. EPS interacts with the extracellular domain of Wzc, which regulates kinase activity. In G. diazotrophicus strains that are deficient in EPS production, the Wzc is rendered inoperative by self-phosphorylation. The presence of EPS promotes the phosphorylation of a glycosyltransferase in the pathway, thus producing EPS. Wzc-mediated self-regulation is an attribute for the control of exopolysaccharide biosynthesis in G. diazotrophicus.

6.
Curr Microbiol ; 78(8): 3079-3091, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34173016

ABSTRACT

The extracellular space in plants, termed the apoplast, has a pH and sugar content that enables bacterial growth and represents a possible niche for the establishment of endophytic bacteria. Previous studies have investigated the effects of diazotrophic bacteria inoculation in sugarcane varieties, but it has not yet been analyzed how the microbial community of apoplast fluid of sugarcane is affected. High-throughput next generation sequencing of the 16S rRNA gene was used throughout this study to determine the effect of inoculation with a diazotrophic bacteria consortium, previously isolated from sugarcane, on the native bacterial population of sugarcane variety RB867515 grown in the field. The analyses were carried out 450 days after inoculation. The results revealed the presence of 22 phyla, with predominance of Proteobacteria phylum. It was observed that the inoculated consortium changed the indigenous bacterial community structure of sugarcane apoplast fluid by decreasing diversity and evenness, interfering in the composition of rare species. Microbial community composition analysis revealed differences between treatments. The differential abundance test showed there were 43 amplicon sequence variants (ASVs) which were relatively more abundant in the inoculated treatment, with predominance of the Sphingomonas genus. The predicted functions of the most abundant ASVs revealed the presence of genera related to plant growth promotion and protection against phytopathogens. Analysis to evaluate the occurrence of inoculated strains in the recovered data was not conclusive since the ASVs taxonomically close to the inoculated bacteria were observed in low abundance. The present study is the first report to elucidate the bacterial community in sugarcane apoplast fluid using a culture-independent approach. It demonstrated that the diazotrophic bacterial consortium interferes in the natural bacterial community in sugarcane variety RB867515.


Subject(s)
Microbiota , Saccharum , Bacteria/genetics , Proteobacteria , RNA, Ribosomal, 16S/genetics
7.
3 Biotech ; 11(6): 292, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34136329

ABSTRACT

Bacterial transcriptome profiling in the presence of plant fluids or extracts during microbial growth may provide relevant information on plant-bacteria interactions. Here, RNA sequencing (RNA-Seq) was used to determine the transcriptomic profile of Herbaspirillum seropedicae strain HRC54 at the early stages of response to sugarcane apoplastic fluid. Differentially expressed gene (DEG) analysis was performed using the DESeq2 and edgeR packages, followed by functional annotation using Blast2GO and gene ontology enrichment analysis using the COG and KEGG databases. After 2 h of sugarcane apoplastic fluid addition to the H. seropedicae HRC54 culture, respectively, 44 and 45 genes were upregulated and downregulated. These genes were enriched in bacterial metabolism (e.g., oxidoreductase and transferase), ABC transporters, motility, secretion systems, and signal transduction. RNA-Seq expression profiles of 12 genes identified in data analyses were verified by RT-qPCR. The results suggested that H. seropedicae HRC54 recognized sugarcane apoplastic fluid as the host signal, and some DEGs were closely involved at the early stages of the establishment of plant-bacteria interactions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02848-y.

8.
Curr Microbiol ; 78(7): 2741-2752, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34031727

ABSTRACT

Plant growth-promoting bacteria (PGPB) are bacteria that have mechanisms that facilitate plant growth in stress conditions such as drought. The objective of this study was to characterize bacterial strains isolated from bromeliads roots in ironstone outcrops (Urucum Residual Plateau, Mato Grosso do Sul, Brazil) for plant growth-promoting under drought conditions. Firstly, we screened isolates with the presence of 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Then, all isolates were tested for tolerance to drought, exopolysaccharides (EPS) production, indole-3-acetic acid (IAA)-producing abilities, phosphate and zinc solubilization, production of catalase and hydrolytic enzymes (amylase, cellulase, and protease). Germination assay and a pot experiment with maize plants submitted to well-watered and drought conditions were performed with the strains most promising (VBN11 and VBE23). Briefly, Bacillus cereus VBE23 showed in vitro higher ACC deaminase activity (3.83 and 2.52 µmol α-KB mg-1 h-1 in non-drought and drought conditions, respectively), tolerance to drought, EPS production and other mechanisms of plant growth promotion: solubilization of phosphate and zinc, ammonia production, catalase activity and production of hydrolytic enzymes (amylase, cellulase, and protease). Inoculation of strain VBE23 in maize seeds submitted to drought conditions showed higher germination concerning uninoculated seeds and inoculated with VBN11. Also, the results indicated that the isolate VBE23 provided higher values of fresh and dry biomass compared to the control of uninoculated treatment and inoculated with VBN11 under drought conditions. This is the first report on the PGPB from ironstone outcrops of Urucum Residual Plateau, Mato Grosso do Sul, Brazil. Thus, this bacterial isolate could be used as a strategy for the facilitation of plant growth in drought environments.


Subject(s)
Carbon-Carbon Lyases , Droughts , Bacteria/genetics , Brazil , Plant Roots , Soil Microbiology
9.
Front Microbiol ; 12: 659965, 2021.
Article in English | MEDLINE | ID: mdl-34054757

ABSTRACT

Bacteria of the genus Bacillus can colonize endophytically and benefit several crops including the control of some pest orders. In view of the benefits provided by these microorganisms and in order to find out an efficient biotechnological control for the giant borer, our interest in studying the microorganisms in symbiosis with sugarcane and the giant borer has arisen, since there is no efficient chemical or biological control method for this pest. Therefore, endophytic Bacillus strains were isolated from three sugarcane niches (apoplast fluid, central internode cylinder and roots) and also from the giant borer larvae living inside sugarcane varieties grown in the Northeast region of Brazil. The taxonomical characterization (16S rRNA) of 157 Gram-positive isolates showed that 138 strains belonged to the Bacillus genus. The most representative species were phylogenetically closely related to B. megaterium (11.5%) followed by B. safensis (10.8%), B. cereus (8.9%), B. oleronius (8.9%), B. amyloliquefaciens (7.0%), and B. pacificus (6.4%). BOX-PCR analyses showed very distinct band pattern profiles suggesting a great diversity of Bacillus species within the sugarcane niches and the digestive tract, while the B. cereus group remained very closely clustered in the dendrogram. According to XRE biomarker analysis, eleven strains (FORCN005, 007, 008, 011, 012, 014, 067, 076, 092, 093, and 135) correspond to B. thuringiensis species. Additional studies using conserved genes (glp, gmk, pta, and tpi) indicated that most of these strains were phylogenetically closely related to B. thuringiensis and may be considered different subspecies. In conclusion, this study suggests that the culturable Bacillus species are greatly diversified within the plant niches and showed Bacillus species in the digestive tract of the giant borer for the first time. These results open new perspectives to understand the role and functions played by these microorganisms in symbiosis with this pest and also the possibility of developing an efficient biological control method for the giant borer using strains identified as the B. thuringiensis species.

10.
Environ Microbiol ; 23(10): 6148-6162, 2021 10.
Article in English | MEDLINE | ID: mdl-33928743

ABSTRACT

Bradyrhizobium spp. are well known to mediate biological nitrogen fixation (BNF) as microsymbionts inhabiting nodules on leguminous plants. However, they may also contribute to plant growth via free-living N2 fixation (FLNF) in association with non-legumes. Notably, several Bradyrhizobium strains from sugarcane roots display FLNF activity. Among them, Bradyrhizobium sacchari is a legume symbiotic species, whereas strains AG48 and M12 are non-symbiotic. In the present study, a phylogenomic approach was applied to study peculiarities of these and other Bradyrhizobium strains with respect to N fixation (nif) gene content in order to reveal genetic features that enable FNLF in Bradyrhizobium spp. All FLNF strains carry an ancestral 'non-symbiotic' nif-gene cluster (NSC). B. sacchari also contains a second 'symbiotic' nif-gene cluster (SC), a characteristic observed in only three of 156 evaluated genomes. B. sacchari stood out and presented a high level of sequence divergence between individual nif-gene homologues and we discuss scenarios for the evolutionary origin of these clusters. The transcript level of NSC nifH gene increased during FLNF, when compared to symbiotic conditions. The data suggest that sugarcane roots harbor diverse Bradyrhizobium spp. that are genetically adapted to a dynamic environment where leguminous and non-leguminous host plants are alternately available.


Subject(s)
Bradyrhizobium , Fabaceae , Saccharum , Bradyrhizobium/genetics , DNA, Bacterial/genetics , Multigene Family , Nitrogen Fixation/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Root Nodules, Plant , Symbiosis/genetics
11.
Microbiol Res ; 244: 126651, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33383369

ABSTRACT

Gluconacetobacter diazotrophicus is a species of great agronomic potential due to its growth-promotion traits. Its colonization process in different plants has been reported. However, there have been no studies regarding its structural colonization in elephant grass. This is a fast-growing C4-Poaceae plant, and its application in Brazil is mainly aimed at feeding dairy cattle, due to its high nutritional value. Also, in the last decade, this grass has been applied in the production of biofuels. The present study aimed to monitor the colonization process of strain LP343 of G. diazotrophicus inoculated in elephant grass seedlings of PCEA genotype, by using a mCherry-tagged bacterium. Samples of roots and shoots collected at different periods were visualized by confocal laser-scanning microscopy. The colony-counting assay was used to compare the number of cells recovered in different niches and a qPCR was performed for the quantification of endophytic cells in root and shoot tissues. Results suggested that the strain LP343 quickly recognized the PCEA roots as host, attached to the elephant grass roots at 6 h, and 7 days after inoculation were able to colonize the xylem vessels of roots and shoots of elephant grass. This study advances our knowledge about the colonization process of G. diazotrophicus species in elephant grass, contributing to future studies involving the plant-bacteria interaction cultivated under gnotobiotic conditions.


Subject(s)
Gluconacetobacter/growth & development , Pennisetum/microbiology , Plant Roots/microbiology , Plant Shoots/microbiology , Brazil , Germ-Free Life , Gluconacetobacter/genetics , Gluconacetobacter/isolation & purification , Pennisetum/growth & development , Plant Roots/growth & development , Plant Shoots/growth & development , Seedlings/growth & development , Seedlings/microbiology
12.
Int J Mol Sci ; 21(1)2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31947822

ABSTRACT

BACKGROUND: Inoculation with Gluconacetobacter diazotrophicus has shown to influence root development in red rice plants, and more recently, the induced systemic tolerance (IST) response to drought was also demonstrated. The goal of this study was to evaluate the inoculation effect of G. diazotrophicus strain Pal5 on the amelioration of drought stress and root development in red rice (Oryza sativa L.). METHODS: The experimental treatments consist of red rice plants inoculated with and without strain Pal5 in presence and absence of water restriction. Physiological, biochemical, and molecular analyses of plant roots were carried out, along with measurements of growth and biochemical components. RESULTS: The plants showed a positive response to the bacterial inoculation, with root growth promotion and induction of tolerance to drought. An increase in the root area and higher levels of osmoprotectant solutes were observed in roots. Bacterial inoculation increased the drought tolerance and positively regulated certain root development genes against the water deficit in plants. CONCLUSION: G. diazotrophicus Pal5 strain inoculation favored red rice plants by promoting various root growth and developmental mechanisms against drought stress, enabling root development and improving biochemical composition.


Subject(s)
Gluconacetobacter/physiology , Oryza/microbiology , Plant Roots/microbiology , Droughts , Oryza/growth & development , Plant Roots/growth & development , Stress, Physiological , Symbiosis , Water/metabolism
13.
J Adv Res ; 19: 3-13, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31341665

ABSTRACT

Analyses of the spatial localization and the functions of bacteria in host plant habitats through in situ identification by immunological and molecular genetic techniques combined with high resolving microscopic tools and 3D-image analysis contributed substantially to a better understanding of the functional interplay of the microbiota in plants. Among the molecular genetic methods, 16S-rRNA genes were of central importance to reconstruct the phylogeny of newly isolated bacteria and to localize them in situ. However, they usually do not allow resolution for phylogenetic affiliations below genus level. Especially, the separation of opportunistic human pathogens from plant beneficial strains, currently allocated to the same species, needs genome-based resolving techniques. Whole bacterial genome sequences allow to discriminate phylogenetically closely related strains. In addition, complete genome sequences enable strain-specific monitoring for biotechnologically relevant strains. In this mini-review we present high resolving approaches for analysis of the composition and key functions of plant microbiota, focusing on interactions of diazotrophic plant growth promoting bacteria, like Azospirillum brasilense, with non-legume host plants. Combining high resolving microscopic analyses with specific immunological detection methods and molecular genetic tools, including especially transcriptome analyses of both the bacterial and plant partners, enables new insights into key traits of beneficial bacteria-plant interactions in holobiontic systems.

14.
Braz J Microbiol ; 50(3): 777-789, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31177380

ABSTRACT

Nine bacterial strains were previously isolated in association with pinewood nematode (PWN) from wilted pine trees. They proved to be nematicidal in vitro, and one of the highest activities, with potential to control PWN, was showed by Serratia sp. M24T3. Its ecology in association with plants remains unclear. This study aimed to evaluate the ability of strain M24T3 to colonize the internal tissues of the model plant Arabidopsis thaliana using confocal microscopy. Plant growth-promoting bacteria (PGPB) functional traits were tested and retrieved in the genome of strain M24T3. In greenhouse conditions, the bacterial effects of all nematicidal strains were also evaluated, co-inoculated or not with Bradyrhizobium sp. 3267, on Vigna unguiculata fitness. Inoculation of strain M24T3 increased the number of A. thaliana lateral roots and the confocal analysis confirmed effective bacterial colonization in the plant. Strain M24T3 showed cellulolytic activity, siderophores production, phosphate and zinc solubilization ability, and indole acetic acid production independent of supplementation with L-tryptophan. In the genome of strain M24T3, genes involved in the interaction with the plants such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinolytic activity, and quorum sensing were also detected. The genomic organization showed ACC deaminase and its leucine-responsive transcriptional regulator, and the activity of ACC deaminase was 594.6 nmol α-ketobutyrate µg protein-1 µl-1. Strain M24T3 in co-inoculation with Bradyrhizobium sp. 3267 promoted the growth of V. unguiculata. In conclusion, this study demonstrated the ability of strain M24T3 to colonize other plants besides pine trees as an endophyte and displays PGPB traits that probably increased plant tolerance to stresses.


Subject(s)
Arabidopsis/microbiology , Nematoda/microbiology , Serratia/physiology , Animals , Antibiosis , Arabidopsis/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon-Carbon Lyases/genetics , Carbon-Carbon Lyases/metabolism , Pinus/parasitology , Plant Diseases/parasitology , Plant Roots/growth & development , Plant Roots/microbiology , Quorum Sensing , Serratia/enzymology , Serratia/genetics , Serratia/isolation & purification , Vigna/growth & development , Vigna/microbiology
15.
PLoS One ; 13(12): e0207863, 2018.
Article in English | MEDLINE | ID: mdl-30550601

ABSTRACT

The stalk apoplast fluid of sugarcane contains different sugars, organic acids and amino acids that may supply the demand for carbohydrates by endophytic bacteria including diazotrophs P. tropica (syn. B. tropica) strain Ppe8, isolated from sugarcane, is part of the bacterial consortium recommended as inoculant to sugarcane. However, little information has been accumulated regarding this plant-bacterium interaction considering that it colonizes internal sugarcane tissues. Here, we made use of the RNA-Seq transcriptomic analysis to study the influence of sugarcane stalk apoplast fluid on Ppe8 gene expression. The bacterium was grown in JMV liquid medium (100 ml), divided equally and then supplemented with 50 ml of fresh JMV medium or 50 ml of apoplast fluid extracted from sugarcane variety RB867515. Total RNA was extracted 2 hours later, the rRNAs were depleted and mRNAs used to construct libraries to sequence the fragments using Ion Torrent technology. The mapping and statistical analysis were carried out with CLC Genomics Workbench software. The RNA-seq data was validated by RT-qPCR using the reference genes fliP1, paaF, and groL. The data analysis showed that 544 genes were repressed and 153 genes were induced in the presence of apoplast fluid. Genes that induce plant defense responses, genes related to chemotaxis and movements were repressed in the presence of apoplast fluid, indicating that strain Ppe8 recognizes the apoplast fluid as a plant component. The expression of genes involved in bacterial metabolism was regulated (up and down), suggesting that the metabolism of strain Ppe8 is modulated by the apoplast fluid. These results suggest that Ppe8 alters its gene expression pattern in the presence of apoplast fluid mainly in order to use compounds present in the fluid as well as to avoid the induction of plant defense mechanisms. This is a pioneer study showing the role played by the sugarcane apoplast fluid on the global modulation of genes in P. tropica strain Ppe8.


Subject(s)
Burkholderiaceae/genetics , Burkholderiaceae/metabolism , Endophytes/genetics , Endophytes/metabolism , Saccharum/metabolism , Saccharum/microbiology , Amino Acids/metabolism , Biological Transport, Active , Carbohydrate Metabolism , Cell Movement/genetics , Cell Wall/genetics , Chemotaxis/genetics , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genes, Bacterial , Plant Structures/metabolism , Plant Structures/microbiology , Signal Transduction
16.
Braz. j. microbiol ; 49(2): 210-211, Apr.-June 2018.
Article in English | LILACS | ID: biblio-889231

ABSTRACT

Abstract Paraburkholderia tropica (syn Burkholderia tropica) are nitrogen-fixing bacteria commonly found in sugarcane. The Paraburkholderia tropica strain Ppe8 is part of the sugarcane inoculant consortium that has a beneficial effect on yield. Here, we report a draft genome sequence of this strain elucidating the mechanisms involved in its interaction mainly with Poaceae. A genome size of approximately 8.75 Mb containing 7844 protein coding genes distributed in 526 subsystems was de novo assembled with ABySS and annotated by RAST. Genes related to the nitrogen fixation process, the secretion systems (I, II, III, IV, and VI), and related to a variety of metabolic traits, such as metabolism of carbohydrates, amino acids, vitamins, and proteins, were detected, suggesting a broad metabolic capacity and possible adaptation to plant association.


Subject(s)
Genome, Bacterial , Burkholderiaceae/genetics , Endophytes/genetics , Bacterial Proteins/genetics , Sequence Analysis, DNA , Computational Biology , Saccharum/microbiology , Burkholderiaceae/isolation & purification , Metabolic Networks and Pathways/genetics , Molecular Sequence Annotation , Endophytes/isolation & purification
17.
Mol Genet Genomics ; 293(4): 997-1016, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29696375

ABSTRACT

Nitrospirillum amazonense is a nitrogen-fixing bacterium that shows potential to promote plant growth when inoculated into sugarcane and rice plants. This microorganism has been the subject of biochemical and genetic characterization to elucidate important functions related to host plant interaction and growth promotion, including the determination of draft genome sequences of two strains, Y2 and CBAmC, the second of which is the aim of the present study. CBAmC has been isolated from sugarcane (Saccharum spp.), and is currently used in a sugarcane consortium inoculant with four other nitrogen-fixing bacterial strains. The present paper describes a significant improvement in the genome sequence and assembly for the N. amazonense strain CBAmC, and determination for the first time of a complete genome sequence for this bacterial species, using PacBio technology. The analysis of the genomic data obtained allowed the discovery of genes coding for metabolic pathways and cellular structures that may be determinant for the success of the bacterial establishment and colonization into the host sugarcane plant, besides conferring important characteristics to the inoculant. These include genes for the use of sucrose and N-glycans, biosynthesis of autoinducer molecules, siderophore production and acquisition, auxin and polyamine biosynthesis, flagellum, σ-fimbriae, a variety of secretion systems, and a complete denitrification system. Concerning genes for nitrogenase and auxiliary proteins, it was possible to corroborate literature data that in N. amazonense these probably had originated from horizontal gene transfer, from bacteria of the Rhizobiales order. The complete genomic sequence of the CBAmC strain of N. amazonense revealed that the bacterium harbors four replicons, including three chromosomes and one chromid, a profile that coincides with that of other two strains, according to literature data, suggesting that as a replicon pattern for the species. Finally, results of phylogenomic analyses in this work support the recent reclassification of the species, separating it from the Azospirillum genus. More importantly, results of the present work shall guide subsequent studies on strain CBAmC as well as the development of a sugarcane inoculant.


Subject(s)
Genome, Bacterial , Nitrogen Fixation , Plant Stems/microbiology , Rhodospirillaceae/genetics , Saccharum/microbiology , Rhodospirillaceae/isolation & purification
18.
Braz J Microbiol ; 49(2): 210-211, 2018.
Article in English | MEDLINE | ID: mdl-29122479

ABSTRACT

Paraburkholderia tropica (syn Burkholderia tropica) are nitrogen-fixing bacteria commonly found in sugarcane. The Paraburkholderia tropica strain Ppe8 is part of the sugarcane inoculant consortium that has a beneficial effect on yield. Here, we report a draft genome sequence of this strain elucidating the mechanisms involved in its interaction mainly with Poaceae. A genome size of approximately 8.75Mb containing 7844 protein coding genes distributed in 526 subsystems was de novo assembled with ABySS and annotated by RAST. Genes related to the nitrogen fixation process, the secretion systems (I, II, III, IV, and VI), and related to a variety of metabolic traits, such as metabolism of carbohydrates, amino acids, vitamins, and proteins, were detected, suggesting a broad metabolic capacity and possible adaptation to plant association.


Subject(s)
Burkholderiaceae/genetics , Endophytes/genetics , Genome, Bacterial , Bacterial Proteins/genetics , Burkholderiaceae/isolation & purification , Computational Biology , Endophytes/isolation & purification , Metabolic Networks and Pathways/genetics , Molecular Sequence Annotation , Saccharum/microbiology , Sequence Analysis, DNA
19.
World J Microbiol Biotechnol ; 34(1): 12, 2017 Dec 18.
Article in English | MEDLINE | ID: mdl-29256050

ABSTRACT

Cr(VI) is a highly toxic metal produced by anthropogenic activity which may impact the environment, affecting plants and animals. In plants, chromium both as Cr(III) or Cr(VI) can be absorbed by roots, is poorly translocated and affects negatively plant growth. Plants used in phytoremediation need to cope with chromium toxicity. This work aimed to evaluate strains of Ochrobactrum tritici and Nitrospirillum amazonense, resistant and modified in order to become chromate whole-cell biosensors, as plant-protectors enabling plants to withstand contaminated soils. In vitro tests were performed in three rice varieties and one maize variety. Initial evaluations of Cr(VI) toxicity to plants showed that plants had different sensitivities and BRS 6 CHUÍ rice variety was the most resistant. The metal affected plant growth and development, essentially in roots which were totally inhibited in rice varieties at 500 µM. This effect was plant-dependent. Modified N. amazonense proved to protect maize plants independently of the inoculation dose but O. tritici showed plant specificity and some toxicity when inoculated at high numbers, inhibiting rice development but not maize. Inoculants were directly responsible for growth improvements of specific plant varieties at 1.25 ppm Cr(VI), a concentration which corresponds to a weak soil contamination. Improvements were observed relatively to the Cr(VI)-treated controls, but also relative to the untreated controls, i.e., the benefits went beyond a simple neutralization of inhibition brought by Cr(VI) toxicity.


Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , Biosensing Techniques , Chromium/toxicity , Plant Development/drug effects , Plant Roots/drug effects , Plant Roots/microbiology , Chromates/metabolism , Chromates/toxicity , Chromium/administration & dosage , Chromium/metabolism , Germination/drug effects , Ochrobactrum/physiology , Oryza/drug effects , Oryza/microbiology , Plant Development/physiology , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/microbiology , Rhodospirillaceae/drug effects , Seeds , Soil Microbiology , Soil Pollutants/toxicity , Zea mays/drug effects , Zea mays/growth & development , Zea mays/microbiology
20.
Antonie Van Leeuwenhoek ; 110(12): 1555-1568, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28695409

ABSTRACT

Quantitative reverse transcription PCR (RT-qPCR) is an important tool for evaluating gene expression. However, this technique requires that specific internal normalizing genes be identified for different experimental conditions. To date, no internal normalizing genes are available for validation of data analyses for Herbaspirillum rubrisubalbicans strain HCC103, an endophyte that is part of the sugarcane consortium inoculant. This work seeks to identify and evaluate suitable reference genes for gene expression studies in HCC103 grown until middle log phase in sugarcane juice obtained from four sugarcane varieties or media with three different carbon sources. The mRNA levels of five candidate genes (rpoA, gyrA, dnaG, recA and gmK) and seven target genes involved in carbon metabolism (acnA, fbp, galE, suhB, wcaA, ORF_0127.0101 and _0127.0123) were quantified by RT-qPCR. Analysis of expression stability of these genes was carried out using geNorm and Normfinder software. The results indicated that the HCC103 dnaG and gyrA genes are the most stable and showed adequate relative expression level changes among the different sugarcane juices. The highest expression level was seen for ORF_0127.0101, which encodes a sugar transporter, in juice from sugarcane variety RB867515 and glucose as the carbon source. The suhB gene, encoding SuhB inositol monophosphatase, had a higher relative expression level on 0.5% glucose, 100% sugarcane juice from variety RB867515 and 0.5% aconitate. Together the results suggest that dnaG and gyrA genes are suitable as reference genes for RT-qPCR analysis of strain HCC103 and that juice from different sugarcane varieties modulates the expression of key genes involved in carbon metabolism.


Subject(s)
Carbon/metabolism , Fruit and Vegetable Juices , Genes, Bacterial , Herbaspirillum/drug effects , Herbaspirillum/physiology , Saccharum/chemistry , Gene Expression Profiling , Gene Expression Regulation, Bacterial , RNA Stability , Real-Time Polymerase Chain Reaction , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...