Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Hematol Oncol ; 17(1): 43, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853260

ABSTRACT

BACKGROUND: Neutrophils play a crucial role in inflammation and in the increased thrombotic risk in myeloproliferative neoplasms (MPNs). We have investigated how neutrophil-specific expression of JAK2-V617F or CALRdel re-programs the functions of neutrophils. METHODS: Ly6G-Cre JAK2-V617F and Ly6G-Cre CALRdel mice were generated. MPN parameters as blood counts, splenomegaly and bone marrow histology were compared to wild-type mice. Megakaryocyte differentiation was investigated using lineage-negative bone marrow cells upon in vitro incubation with TPO/IL-1ß. Cytokine concentrations in serum of mice were determined by Mouse Cytokine Array. IL-1α expression in various hematopoietic cell populations was determined by intracellular FACS analysis. RNA-seq to analyse gene expression of inflammatory cytokines was performed in isolated neutrophils from JAK2-V617F and CALR-mutated mice and patients. Bioenergetics of neutrophils were recorded on a Seahorse extracellular flux analyzer. Cell motility of neutrophils was monitored in vitro (time lapse microscopy), and in vivo (two-photon microscopy) upon creating an inflammatory environment. Cell adhesion to integrins, E-selectin and P-selection was investigated in-vitro. Statistical analysis was carried out using GraphPad Prism. Data are shown as mean ± SEM. Unpaired, two-tailed t-tests were applied. RESULTS: Strikingly, neutrophil-specific expression of JAK2-V617F, but not CALRdel, was sufficient to induce pro-inflammatory cytokines including IL-1 in serum of mice. RNA-seq analysis in neutrophils from JAK2-V617F mice and patients revealed a distinct inflammatory chemokine signature which was not expressed in CALR-mutant neutrophils. In addition, IL-1 response genes were significantly enriched in neutrophils of JAK2-V617F patients as compared to CALR-mutant patients. Thus, JAK2-V617F positive neutrophils, but not CALR-mutant neutrophils, are pathogenic drivers of inflammation in MPN. In line with this, expression of JAK2-V617F or CALRdel elicited a significant difference in the metabolic phenotype of neutrophils, suggesting a stronger inflammatory activity of JAK2-V617F cells. Furthermore, JAK2-V617F, but not CALRdel, induced a VLA4 integrin-mediated adhesive phenotype in neutrophils. This resulted in reduced neutrophil migration in vitro and in an inflamed vessel. This mechanism may contribute to the increased thrombotic risk of JAK2-V617F patients compared to CALR-mutant individuals. CONCLUSIONS: Taken together, our findings highlight genotype-specific differences in MPN-neutrophils that have implications for the differential pathophysiology of JAK2-V617F versus CALR-mutant disease.


Subject(s)
Inflammation , Janus Kinase 2 , Myeloproliferative Disorders , Neutrophils , Animals , Neutrophils/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mice , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/metabolism , Humans , Inflammation/genetics , Inflammation/pathology , Calreticulin/genetics , Calreticulin/metabolism , Mice, Transgenic , Mice, Inbred C57BL , Cytokines/metabolism
3.
Int J Mol Sci ; 23(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35328626

ABSTRACT

Myeloproliferative neoplasms (MPNs), a group of malignant hematological disorders, occur as a consequence of somatic mutations in the hematopoietic stem cell compartment and show excessive accumulation of mature myeloid cells in the blood. A major cause of morbidity and mortality in these patients is the marked prothrombotic state leading to venous and arterial thrombosis, including myocardial infarction (MI), deep vein thrombosis (DVT), and strokes. Additionally, many MPN patients suffer from inflammation-mediated constitutional symptoms, such as fever, night sweats, fatigue, and cachexia. The chronic inflammatory syndrome in MPNs is associated with the up-regulation of various inflammatory cytokines in patients and is involved in the formation of the so-called MPN thromboinflammation. JAK2-V617F, the most prevalent mutation in MPNs, has been shown to activate a number of integrins on mature myeloid cells, including granulocytes and erythrocytes, which increase adhesion and drive venous thrombosis in murine knock-in/out models. This review aims to shed light on the current understanding of thromboinflammation, involvement of neutrophils in the prothrombotic state, plausible molecular mechanisms triggering the process of thrombosis, and potential novel therapeutic targets for developing effective strategies to reduce the MPN disease burden.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Thrombosis , Animals , Humans , Inflammation/complications , Inflammation/genetics , Janus Kinase 2/metabolism , Mice , Mutation , Myeloproliferative Disorders/complications , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics , Neoplasms/complications , Thromboinflammation , Thrombosis/etiology
4.
Blood Adv ; 6(2): 399-404, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34559181

ABSTRACT

Somatic mutations in JAK2, MPL and Calreticulin and inflammation play a key role in pathophysiology of chronic myeloproliferative neoplasia (CMN). One of the most prominent cytokines elevated in serum of Polycythemia vera patients is interleukin-6 (IL-6). Currently, it is being discussed whether suppression of inflammation by anti-cytokine approaches as anti-IL-6 treatment may be therapeutically useful in CMN. We here sought to investigate the efficacy of anti-IL-6 treatment on inflammatory cytokines, hematocrit and splenomegaly in CMN like disease. JAK2-V617F knock-in mice (JAK2+/V617F) were treated for three weeks with anti-IL-6 antibody (Ab) or IgG-control. Upon anti-IL-6 Ab treatment, serum levels of CXCL2 and CXCL10 were significantly reduced. In addition, CXCL1, CCL11, M-CSF, G-CSF, IL-17, IL-12p40 and CCL2 were reduced by a factor of 0.3 -- 0.8. Partly, this was also achieved by applying high-dose IgG. Hematocrit, erythrocyte and leukocyte counts were elevated in JAK2+/V617F mice but were not reduced by anti-IL6 Ab treatment. In addition, there was no apparent amelioration of splenomegaly and spleen histopathology. In conclusion, anti-IL-6 Ab treatment did not result in improvement of hematological disease parameters but was shown to modulate the serum cytokine signature.


Subject(s)
Myeloproliferative Disorders , Polycythemia Vera , Animals , Cytokines , Disease Models, Animal , Hematocrit , Humans , Immunoglobulin G/therapeutic use , Inflammation , Interleukin-6 , Mice , Myeloproliferative Disorders/drug therapy , Polycythemia Vera/complications , Polycythemia Vera/drug therapy , Polycythemia Vera/genetics , Splenomegaly/drug therapy , Splenomegaly/etiology
5.
Blood Adv ; 5(23): 5349-5359, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34592754

ABSTRACT

Chronic nonresolving inflammatory syndrome is a major disease feature in myeloproliferative neoplasms (MPNs). Systemic inflammation promotes the growth of the JAK2-V617F+ hematopoietic stem cell clone and is associated with constitutive symptoms (eg, fever, cachexia, and fatigue). Therefore, it is being discussed whether anti-inflammatory therapy, in addition to the well-established JAK inhibitor therapy, may be beneficial in the control of constitutive symptoms. Moreover, effective control of the inflammatory microenvironment may contribute to prevent transformation into secondary myelofibrosis and acute leukemia. Given the pivotal role of tumor necrosis factor α (TNF-α) in MPN and the distinct roles of TNF-α receptor 1 (TNFR1) and TNFR2 in inflammation, we investigated the therapeutic effects of αTNFR1 and αTNFR2 antibody treatment in MPN-like disease using the JAK2+/VF knock-in mouse model. Peripheral blood counts, bone marrow/spleen histopathology, and inflammatory cytokine levels in serum were investigated. αTNFR2 antibody treatment decreased white blood cells and modulated the serum levels of several cytokines [CXCL2, CXCL5, interleukin-12(p40)], as well as of macrophage colony-stimulating factor, but they lacked efficacy to ameliorate hematocrit and splenomegaly. αTNFR1 antibody treatment resulted in the mild suppression of elevated hematocrit of -10.7% and attenuated splenomegaly (22% reduction in spleen weight). In conclusion, our studies show that TNFR1 and TNFR2 play different roles in the biology of JAK2-V617F-induced disease that may be of relevance in future therapeutic settings.


Subject(s)
Myeloproliferative Disorders , Primary Myelofibrosis , Animals , Anti-Inflammatory Agents , Mice , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Primary Myelofibrosis/drug therapy , Primary Myelofibrosis/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type II/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...