Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 47(41): 14741-14750, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30284572

ABSTRACT

The purpose of this work is to study the influence of the substitution of Fe(ii) by Mn(ii) on the spin crossover behaviour of [FexMn1-x(L222N3O2)(CN)2]·H2O solid solutions where L222N3O2 is a macrocyclic ligand = 2,13-dimethyl-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]-octadeca-1(18),2,12,14,16-pentaene. The pure Fe(ii) complex is known to present a change of the coordination number from 7 at high temperature to 6 at low temperature. The target of the solid solution study was to investigate the effect of metal dilution on this coordination change. We have then measured the thermal spin crossover features as well as the metastable HS state lifetime generated by rapid thermal quenching, which was probed through the determination of the T(TIESST) value. A discussion of the spin-state as a function of temperature is given based on the phase diagram of this series and based on the investigation of the crystal structure of the [Mn(L222N3O2)(CN)2]·H2O complex and its comparison with the published [Fe(L222N3O2)(CN)2]·H2O master compound.

2.
Chemistry ; 21(12): 4805-16, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25641549

ABSTRACT

Crystalline [Fe(bppSMe)2][BF4]2 (1; bppSMe = 4-(methylsulfanyl)-2,6-di(pyrazol-1-yl)pyridine) undergoes an abrupt spin-crossover (SCO) event at 265±5 K. The crystals also undergo a separate phase transition near 205 K, involving a contraction of the unit-cell a axis to one-third of its original value (high-temperature phase 1; Pbcn, Z = 12; low-temperature phase 2; Pbcn, Z = 4). The SCO-active phase 1 contains two unique molecular environments, one of which appears to undergo SCO more gradually than the other. In contrast, powder samples of 1 retain phase 1 between 140-300 K, although their SCO behaviour is essentially identical to the single crystals. The compounds [Fe(bppBr)2][BF4]2 (2; bppBr = 4-bromo-2,6-di(pyrazol-1-yl)pyridine) and [Fe(bppI)2][BF4]2 (3; bppI = 4-iodo-2,6-di(pyrazol-1-yl)-pyridine) exhibit more gradual SCO near room temperature, and adopt phase 2 in both spin states. Comparison of 1-3 reveals that the more cooperative spin transition in 1, and its separate crystallographic phase transition, can both be attributed to an intermolecular steric interaction involving the methylsulfanyl substituents. All three compounds exhibit the light-induced excited-spin-state trapping (LIESST) effect with T(LIESST = 70-80 K), but show complicated LIESST relaxation kinetics involving both weakly cooperative (exponential) and strongly cooperative (sigmoidal) components.

3.
Dalton Trans ; 43(21): 7820-9, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24699627

ABSTRACT

The effects of metal dilution on the spin-crossover behavior of iron(II) in the mixed crystal series [Fe(x)Zn(1-x)(bpp)2](NCSe)2 (bpp = 2,6-bis(pyrazol-3-yl)pyridine) have been studied using magnetic susceptibility, photomagnetism and diffuse reflectivity measurements. For each mixed-crystal system, the thermal spin transition temperature, T(1/2), and the relaxation temperature of the photo-induced high-spin state, T(LIESST), have been systematically determined. It appears that T(1/2) decreases with the metal dilution while T(LIESST) remains unchanged. Dilution also tends to decrease the hysteresis width and smooth the transition curves. These effects were discussed first qualitatively and then quantitatively on the basis of a kinetic study governing the photo-induced back conversion taking into account the relative sizes of Zn(II) and Fe(II) ions. Interestingly, single crystals were obtained for [Fe(0.6)Zn(0.4)(bpp)2](NCSe)2 allowing the X-ray diffraction crystal-structure determination.

4.
Phys Chem Chem Phys ; 14(18): 6192-9, 2012 May 14.
Article in English | MEDLINE | ID: mdl-22294040

ABSTRACT

We report the spin state photo-switching dynamics in two polymorphs of a spin-crossover molecular complex triggered by a femtosecond laser flash, as determined by combining femtosecond optical pump-probe spectroscopy and picosecond X-ray diffraction techniques. The light-driven transformations in the two polymorphs are compared. Combining both techniques and tracking how the X-ray data correlate with optical signals allow understanding of how electronic and structural degrees of freedom couple and play their role when the switchable molecules interact in the active crystalline medium. The study sheds light on crossing the border between femtochemistry at the molecular scale and femtoswitching at the material scale.

5.
Dalton Trans ; (36): 7462-72, 2009 Sep 28.
Article in English | MEDLINE | ID: mdl-19727468

ABSTRACT

An iron(II) complex [Fe(L5)2][ClO4]2 of a new nonplanar tridentate ligand [L5 = 2-[3-(2'-pyridyl)pyrazol-1-ylmethyl](1-methylimidazole)] has been synthesized and its spin-transition properties have been investigated. X-ray structural analysis of the solvated compound [Fe(L5)2][ClO4]2.CH3CN at 100 K and at 298 K revealed a mononuclear Fe(II)N6 pseudooctahedron with the tridentate ligand in the meridional coordination mode. Magnetic susceptibility measurements revealed LS (1A1) <--> HS (5T2) transition starting above room temperature and remained incomplete even up to 350 K, however providing evidence for the hysteretic behaviour of the transition. Photo-magnetic measurements using a 532 nm laser revealed incomplete light-induced excited spin-state trapping (LIESST). Relaxation curves in the dark exhibited a stretched exponential shape, typical for broad distributions of relaxation times. The complete photo-magnetic data were modelled using a non-cooperative master equation including a tunnelling process with distributed parameters and accounting for the bulk absorption of light. We also measured the diffuse reflectance properties, with detailed investigation of the absorption spectra and discussed the obtained features with respect to structural properties, including the suggested presence of disorder.

6.
Angew Chem Int Ed Engl ; 48(14): 2549-52, 2009.
Article in English | MEDLINE | ID: mdl-19107885

ABSTRACT

Bottoms up! A discrete metallo-supramolecular nanoball (see picture), synthesized by using "bottom-up" methodologies, uniquely undergoes a solvent-sensitive, physically addressable electronic spin switching. The switching occurs by thermal, light, or solvent perturbation, where importantly it can be switched "on" or "off" by green or red laser irradiation, respectively.

7.
Dalton Trans ; (20): 2702-7, 2008 May 28.
Article in English | MEDLINE | ID: mdl-18688401

ABSTRACT

The thermal and light-induced spin transitions in [Fe(x)Zn(1-x)(phen)2(NCS)2] (phen = 1,10-phenantholine) have been investigated by magnetic susceptibility, photomagnetism and diffuse reflectivity measurements. These complexes display a thermal spin transition and undergo the light-induced excited spin state trapping (LIESST) effect at low temperatures. For each compound, the thermal spin transition temperature, T1/2, and the relaxation temperature of the photo-induced high-spin state, T(LIESST), have been systematically determined. It appears that T1/2 decreases with the metal dilution while T(LIESST) remains unchanged. This behaviour is discussed on the basis of the kinetic study governing the photo-induced back conversion.

8.
Inorg Chem ; 47(17): 7577-87, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18672871

ABSTRACT

The title compound [Fe (II)(L) 2][ClO 4] 2.C 7H 8 (L = 2-[3-(2'-pyridyl)pyrazol-1-ylmethyl]pyridine) has been isolated while attempting to grow single crystals of the spin-transition (continuous-type) compound [Fe (II)(L) 2][ClO 4] 2, published earlier ( Dalton Trans. 2003, 3392-3397). Magnetic susceptibility measurements, as well as Mossbauer and calorimetric investigations on polycrystalline samples of [Fe(L) 2][ClO 4] 2.C 7H 8 revealed the occurrence of an abrupt HS ( (5) T 2) <--> LS ( (1) A 1) transition with steep and narrow (2 K) hysteresis at approximately 232 K. The photomagnetic properties exhibit features typical for a broad distribution of activation energies, with relaxation curves in the shape of stretched exponentials. We performed a crystal structure determination of the compound at 120, 240, and 270 K. A noteworthy temperature-dependent behavior of the structural parameters was observed, in terms of disorder of both the anions and solvent molecules, leading to a strong thermal dependence of the strength and dimensionality of the interaction network. Additional data were obtained by diffuse reflectance measurements. We model and discuss the antagonistic effects of interactions and disorder by using a two-level cooperative mean-field approach which includes a distribution of barrier energies at the microscopic scale.

9.
Inorg Chem ; 46(10): 4114-9, 2007 May 14.
Article in English | MEDLINE | ID: mdl-17425303

ABSTRACT

A comprehensive study of the photomagnetic behavior of the [Fe(L222N5)(CN)2].H2O complex has been carried out. This complex is characterized by a low-spin (LS) iron(II)-metal center up to 400 K and exhibits at 10 K the well-known Light-Induced Excited Spin State Trapping (LIESST) effect. The critical LIESST temperature (T(LIESST)) has been measured to be 105 K. The kinetics of the transition from the metastable high-spin (HS) state to the low-spin state have been determined and used for reproducing the experimental T(LIESST) curve. This study represents a second example of a fully low-spin iron(II)-metal complex up to 400 K, which can be photoexcited at low temperature with an atypical long-lived metastable HS state. This underlines the preponderant role of the inner coordination sphere for stabilizing the lifetime of the photoinduced HS state.

SELECTION OF CITATIONS
SEARCH DETAIL
...