Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Oecologia ; 182(2): 547-57, 2016 10.
Article in English | MEDLINE | ID: mdl-27337965

ABSTRACT

While the importance of local-scale habitat niches in shaping tree species turnover along environmental gradients in tropical forests is well appreciated, relatively little is known about the influence of phylogenetic signal in species' habitat niches in shaping local community structure. We used detailed maps of the soil resource and topographic variation within eight 24-50 ha tropical forest plots combined with species phylogenies created from the APG III phylogeny to examine how phylogenetic beta diversity (indicating the degree of phylogenetic similarity of two communities) was related to environmental gradients within tropical tree communities. Using distance-based redundancy analysis we found that phylogenetic beta diversity, expressed as either nearest neighbor distance or mean pairwise distance, was significantly related to both soil and topographic variation in all study sites. In general, more phylogenetic beta diversity within a forest plot was explained by environmental variables this was expressed as nearest neighbor distance versus mean pairwise distance (3.0-10.3 % and 0.4-8.8 % of variation explained among plots, respectively), and more variation was explained by soil resource variables than topographic variables using either phylogenetic beta diversity metric. We also found that patterns of phylogenetic beta diversity expressed as nearest neighbor distance were consistent with previously observed patterns of niche similarity among congeneric species pairs in these plots. These results indicate the importance of phylogenetic signal in local habitat niches in shaping the phylogenetic structure of tropical tree communities, especially at the level of close phylogenetic neighbors, where similarity in habitat niches is most strongly preserved.


Subject(s)
Phylogeny , Tropical Climate , Ecosystem , Forests , Soil/chemistry , Trees
2.
Ecol Appl ; 24(1): 84-93, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24640536

ABSTRACT

Information on landscape-scale patterns in species distributions and community types is vital for ecological science and effective conservation assessment and planning. However, detailed maps of plant community structure at landscape scales seldom exist due to the inability of field-based inventories to map a sufficient number of individuals over large areas. The Carnegie Airborne Observatory (CAO) collected hyperspectral and lidar data over Kruger National Park, South Africa, and these data were used to remotely identify > 500 000 tree and shrub crowns over a 144-km2 landscape using stacked support vector machines. Maps of community compositional variation were produced by ordination and clustering, and the importance of hillslope-scale topo-edaphic variation in shaping community structure was evaluated with redundancy analysis. This remote species identification approach revealed spatially complex patterns in woody plant communities throughout the landscape that could not be directly observed using field-based methods alone. We estimated that topo-edaphic variables representing catenal sequences explained 21% of species compositional variation, while we also uncovered important community patterns that were unrelated to catenas, indicating a large role for other soil-related factors in shaping the savanna community. Our results demonstrate the ability of airborne species identification techniques to map biodiversity for the evaluation of ecological controls on community composition over large landscapes.


Subject(s)
Biodiversity , Plants/classification , Demography , South Africa
3.
Proc Biol Sci ; 280(1766): 20130548, 2013 Sep 07.
Article in English | MEDLINE | ID: mdl-23843384

ABSTRACT

Tropical tree communities are shaped by local-scale habitat heterogeneity in the form of topographic and edaphic variation, but the life-history stage at which habitat associations develop remains poorly understood. This is due, in part, to the fact that previous studies have not accounted for the widely disparate sample sizes (number of stems) that result when trees are divided into size classes. We demonstrate that the observed habitat structuring of a community is directly related to the number of individuals in the community. We then compare the relative importance of habitat heterogeneity to tree community structure for saplings, juveniles and adult trees within seven large (24-50 ha) tropical forest dynamics plots while controlling for sample size. Changes in habitat structuring through tree life stages were small and inconsistent among life stages and study sites. Where found, these differences were an order of magnitude smaller than the findings of previous studies that did not control for sample size. Moreover, community structure and composition were very similar among tree sub-communities of different life stages. We conclude that the structure of these tropical tree communities is established by the time trees are large enough to be included in the census (1 cm diameter at breast height), which indicates that habitat filtering occurs during earlier life stages.


Subject(s)
Ecosystem , Trees/physiology , Tropical Climate , Biodiversity , Population Density , Population Dynamics , Trees/anatomy & histology , Trees/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL