Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Yeast Res ; 21(4)2021 06 08.
Article in English | MEDLINE | ID: mdl-34042971

ABSTRACT

In Saccharomyces cerevisiae, the complete set of proteins involved in transport of lactic acid across the cell membrane has not been determined. In this study, we aimed to identify transport proteins not previously described to be involved in lactic acid transport via a combination of directed evolution, whole-genome resequencing and reverse engineering. Evolution of a strain lacking all known lactic acid transporters on lactate led to the discovery of mutated Ato2 and Ato3 as two novel lactic acid transport proteins. When compared to previously identified S. cerevisiae genes involved in lactic acid transport, expression of ATO3T284C was able to facilitate the highest growth rate (0.15 ± 0.01 h-1) on this carbon source. A comparison between (evolved) sequences and 3D models of the transport proteins showed that most of the identified mutations resulted in a widening of the narrowest hydrophobic constriction of the anion channel. We hypothesize that this observation, sometimes in combination with an increased binding affinity of lactic acid to the sites adjacent to this constriction, are responsible for the improved lactic acid transport in the evolved proteins.


Subject(s)
Lactic Acid/metabolism , Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Amino Acid Substitution , Biological Transport , Directed Molecular Evolution , Molecular Docking Simulation , Point Mutation , Reverse Genetics , Saccharomyces cerevisiae/metabolism
2.
Metab Eng ; 56: 190-197, 2019 12.
Article in English | MEDLINE | ID: mdl-31585168

ABSTRACT

Efficient production of fuels and chemicals by metabolically engineered micro-organisms requires availability of precursor molecules for product pathways. In eukaryotic cell factories, heterologous product pathways are usually expressed in the cytosol, which may limit availability of precursors that are generated in other cellular compartments. In Saccharomyces cerevisiae, synthesis of the precursor molecule succinyl-Coenzyme A is confined to the mitochondrial matrix. To enable cytosolic synthesis of succinyl-CoA, we expressed the structural genes for all three subunits of the Escherichia coli α-ketoglutarate dehydrogenase (αKGDH) complex in S. cerevisiae. The E. coli lipoic-acid scavenging enzyme was co-expressed to enable cytosolic lipoylation of the αKGDH complex, which is required for its enzymatic activity. Size-exclusion chromatography and mass spectrometry indicated that the heterologously expressed αKGDH complex contained all subunits and that its size was the same as in E. coli. Functional expression of the heterologous complex was evident from increased αKGDH activity in the cytosolic fraction of yeast cell homogenates. In vivo cytosolic activity of the αKGDH complex was tested by constructing a reporter strain in which the essential metabolite 5-aminolevulinic acid could only be synthetized from cytosolic, and not mitochondrial, succinyl-CoA. To this end HEM1, which encodes the succinyl-CoA-converting mitochondrial enzyme 5-aminolevulinic acid (ALA) synthase, was deleted and a bacterial ALA synthase was expressed in the cytosol. In the resulting strain, complementation of ALA auxotrophy depended on activation of the αKGDH complex by lipoic acid addition. Functional expression of a bacterial αKGDH complex in yeast represents a vital step towards efficient yeast-based production of compounds such as 1,4-butanediol and 4-aminobutyrate, whose product pathways use succinyl-CoA as a precursor.


Subject(s)
Escherichia coli Proteins , Gene Expression , Ketoglutarate Dehydrogenase Complex , Saccharomyces cerevisiae , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/genetics , Ketoglutarate Dehydrogenase Complex/biosynthesis , Ketoglutarate Dehydrogenase Complex/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...