Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Planta ; 259(4): 90, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478121

ABSTRACT

MAIN CONCLUSION: A structural re-modeling of the thylakoid system, including granum size and regularity, occurs in chlorophyll-deficient wheat mutants affected by photosynthetic membrane over-reduction. In the chloroplast of land plants, the thylakoid system is defined by appressed grana stacks and unstacked stroma lamellae. This study focuses on the variations of the grana organization occurring in outdoor-grown wheat mutants characterized by low chlorophyll content and a tendency for photosynthetic membrane over-reduction. Triticum aestivum ANK-32A and Triticum durum ANDW-7B were compared to their corresponding WT lines, NS67 and LD222, respectively. Electron micrographs of chloroplasts were used to calculate grana ultrastructural parameters. Photosynthetic parameters were obtained by modulated chlorophyll fluorescence and applying Light Curves (LC) and Rapid Light Curves (RLC) protocols. For each photosynthetic parameter, the difference Δ(RLC-LC) was calculated to evaluate the flexible response to light in the examined lines. In the mutants, fewer and smaller disks formed grana stacks characterized by a marked increase in lateral and cross-sectional irregularity, both negatively correlated with the number of layers per granum. A relationship was found between membrane over-reduction and granum structural irregularity. The possible acclimative significance of a greater proportion of stroma-exposed grana domains in relieving the excess electron pressure on PSI is discussed.


Subject(s)
Chlorophyll , Thylakoids , Triticum/genetics , Photosystem II Protein Complex , Cross-Sectional Studies , Chloroplasts/ultrastructure
2.
Protoplasma ; 261(1): 143-159, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37612526

ABSTRACT

Within the ancient vascular plant lineage known as lycophytes, many Selaginella species contain only one giant chloroplast in the upper epidermal cells of the leaf. In deep-shade species, such as S. martensii, the chloroplast is cup-shaped and the thylakoid system differentiates into an upper lamellar region and a lower granal region (bizonoplast). In this report, we describe the ultrastructural changes occurring in the giant chloroplast hosted in the epidermal cells of S. martensii during the daily relocation of the organelle. The process occurs in up to ca. 40% of the microphylls without the plants being exposed to high-light flecks. The relocated chloroplast loses its cup shape: first, it flattens laterally toward the radial cell wall and then assumes a more globular shape. The loss of the conical cell shape, the side-by-side lateral positioning of vacuole and chloroplast, and the extensive rearrangement of the thylakoid system to only granal cooperate in limiting light absorption. While the cup-shaped chloroplast emphasizes the light-harvesting capacity in the morning, the relocated chloroplast is suggested to support the renewal of the thylakoid system during the afternoon, including the recovery of photosystem II (PSII) from photoinhibition. The giant chloroplast repositioning is part of a complex reversible reshaping of the whole epidermal cell.


Subject(s)
Selaginellaceae , Thylakoids , Thylakoids/ultrastructure , Selaginellaceae/physiology , Chloroplasts/ultrastructure , Photosystem II Protein Complex , Plant Leaves , Light
3.
Plant Sci ; 336: 111833, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37595894

ABSTRACT

In vascular plants, the thylakoid architecture is dominated by the highly structured multiple membrane layers known as grana. The structural diversity of the thylakoid system among plant species is mainly determined by the adaptation to the growth light regime, according to a paradigm stating that shade-tolerant species are featured by a high membrane extension with an enhanced number of thylakoid layers per granum. In this study, the thylakoid system was analysed in Selaginella martensii Spring, a shade-adapted rainforest species belonging to lycophytes, a diminutive plant lineage, sister clade of all other vascular plants (euphyllophytes, including ferns and seed plants). The species is characterized by giant cup-shaped chloroplasts in the upper epidermis and, quantitatively less important, disk-shaped chloroplasts in the mesophyll and lower epidermis. The study aimed at the quantitative assessment of the thylakoid appression exploiting a combination of complementary methods, including electron microscopy, selective thylakoid solubilisation, electron paramagnetic resonance, and simultaneous analysis of fast chlorophyll a fluorescence and P700 redox state. With a chlorophyll a/b ratio of 2.6 and PSI/PSII ratio of 0.31, the plant confirmed two typical hallmarks of shade-adaptation. The morphometric analysis of electron micrographs revealed a 33% fraction of non-appressed thylakoid domains. However, contrasting with the structural paradigm of thylakoid shade-adaptation in angiosperms, S. martensii privileges the increase in the granum diameter in place of the increase in the number of layers building the granum. The very wide grana diameter, 727 nm on average, largely overcame the threshold of 500 nm currently hypothesized to allow an effective diffusion of long-range electron carriers. The fraction of non-appressed membranes based on the selective solubilisation of thylakoids with digitonin was 26%, lower than the morphometric determination, indicating the presence of non-appressed domains inaccessible to the detergent, most probably because of the high three-dimensional complexity of the thylakoid system in S. martensii. Particularly, strong irregularity of grana stacks is determined by assembling thylakoid layers of variable width that tend to slide apart from each other as the number of stacked layers increases.

4.
Plants (Basel) ; 12(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36903888

ABSTRACT

The release of inadequately treated urban wastewater is the main cause of environmental pollution of aquatic ecosystems. Among efficient and environmentally friendly technologies to improve the remediation process, those based on microalgae represent an attractive alternative due to the potential of microalgae to remove nitrogen (N) and phosphorus (P) from wastewaters. In this work, microalgae were isolated from the centrate stream of an urban wastewater treatment plant and a native Chlorella-like species was selected for studies on nutrient removal from centrate streams. Comparative experiments were set up using 100% centrate and BG11 synthetic medium, modified with the same N and P as the effluent. Since microalgal growth in 100% effluent was inhibited, cultivation of microalgae was performed by mixing tap-freshwater with centrate at increasing percentages (50%, 60%, 70%, and 80%). While algal biomass and nutrient removal was little affected by the differently diluted effluent, morpho-physiological parameters (FV/FM ratio, carotenoids, chloroplast ultrastructure) showed that cell stress increased with increasing amounts of centrate. However, the production of an algal biomass enriched in carotenoids and P, together with N and P abatement in the effluent, supports promising microalgae applications that combine centrate remediation with the production of compounds of biotechnological interest; for example, for organic agriculture.

5.
Plants (Basel) ; 12(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36840171

ABSTRACT

Wheat mutants with a reduced chlorophyll synthesis are affected by a defective control of the photosynthetic electron flow, but tend to recover a wild-type phenotype. The sensitivity of some mutants to light fluctuations suggested that cultivation outdoors could significantly impact productivity. Six mutant lines of Triticum durum or Triticum aestivum with their respective wild-type cultivars were cultivated with a regular seasonal cycle (October-May) in a semi-field experiment. Leaf chlorophyll content and fluorescence parameters were analysed at the early (November) and late (May) developmental stages, and checked for correlation with morphometric and grain-production parameters. The alleviation of the phenotype severity concerned primarily the recovery of the photosynthetic-membrane functionality, but not the leaf chlorophyll content. Photosystem II (PSII) was less photoprotected in the mutants, but a moderate PSII photoinhibition could help control the electron flow into the chain. The accumulation of interchain electron carriers was a primary acclimative response towards the naturally fluctuating environment, maximally exploited by the mature durum-wheat mutants. The mutation itself and/or the energy-consuming compensatory mechanisms markedly influenced the plant morphogenesis, leading especially to reduced tillering, which in turn resulted in lower grain production per plant. Consistently with the interrelation between early photosynthetic phenotype and grain-yield per plant, chlorophyll-fluorescence indexes related to the level of photoprotective thermal dissipation (pNPQ), photosystem II antenna size (ABS/RC), and pool of electron carriers (Sm) are proposed as good candidates for the in-field phenotyping of chlorophyll-deficient wheat.

6.
Physiol Plant ; 174(1): e13604, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34811759

ABSTRACT

The Lycophyte Selaginella martensii efficiently acclimates to diverse light environments, from deep shade to full sunlight. The plant does not modulate the abundance of the Light Harvesting Complex II, mostly found as a free trimer, and does not alter the maximum capacity of thermal dissipation (NPQ). Nevertheless, the photoprotection is expected to be modulatable upon long-term light acclimation to preserve the photosystems (PSII, PSI). The effects of long-term light acclimation on PSII photoprotection were investigated using the chlorophyll fluorometric method known as "photochemical quenching measured in the dark" (qPd ). Singularly high-qPd values at relatively low irradiance suggest a heterogeneous antenna system (PSII antenna uncoupling). The extent of antenna uncoupling largely depends on the light regime, reaching the highest value in sun-acclimated plants. In parallel, the photoprotective NPQ (pNPQ) increased from deep-shade to high-light grown plants. It is proposed that the differences in the long-term modulation in the photoprotective capacity are proportional to the amount of uncoupled LHCII. In deep-shade plants, the inconsistency between invariable maximum NPQ and lower pNPQ is attributed to the thermal dissipation occurring in the PSII core.


Subject(s)
Arabidopsis , Selaginellaceae , Arabidopsis/metabolism , Chlorophyll , Light , Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Selaginellaceae/metabolism
7.
Plants (Basel) ; 12(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36616154

ABSTRACT

Microalgae are proposed in several biotechnological fields because of their ability to produce biomass enriched in high-value compounds according to cultivation conditions. Regarding the health sector, an emerging area focuses on natural products exploitable against viruses. This work deals with the characterization of the green microalga Neochloris oleoabundans cultivated under autotrophic and mixotrophic conditions as a source of whole aqueous extracts, tested as antivirals against HCoV-229E (Coronaviridae family). Glucose was employed for mixotrophic cultures. Growth and maximum quantum yield of photosystem II were monitored for both cultivations. Algae extracts for antiviral tests were prepared using cultures harvested at the early stationary phase of growth. Biochemical and morphological analyses of algae indicated a different content of the most important classes of bioactive compounds with antiviral properties (lipids, exo-polysaccharides, and total phenolics, proteins and pigments). To clarify which phase of HCoV-229E infection on MRC-5 fibroblast cells was affected by N. oleoabundans extracts, four conditions were tested. Extracts gave excellent results, mainly against the first steps of virus infection. Notwithstanding the biochemical profile of algae/extracts deserves further investigation, the antiviral effect may have been mainly promoted by the combination of proteins/pigments/phenolics for the extract derived from autotrophic cultures and of proteins/acidic exo-polysaccharides/lipids in the case of mixotrophic ones.

8.
J Photochem Photobiol B ; 215: 112114, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33385824

ABSTRACT

In plants, the non-photochemical quenching of chlorophyll fluorescence (NPQ) induced by high light reveals the occurrence of a multiplicity of regulatory processes of photosynthesis, primarily devoted to photoprotection of photosystem I and II (PSI and PSII). The study of NPQ relaxation in darkness allows the separation of three kinetically distinct phases: the fast relaxing high-energy quenching qE, the intermediate relaxing phase and the nearly non-relaxatable photoinhibitory quenching. Several processes can underlie the intermediate phase. In the ancient vascular plant Selaginella martensii (Lycopodiophyta) this component, here termed qX, was previously proposed to reflect mainly a photoprotective energy-spillover from PSII to PSI. It is hypothesized that qX is induced by an over-reduced photosynthetic electron transport chain from PSII to final acceptors. To test this hypothesis the leaves were treated with the reductant dithiothreitol (DTT) and the chlorophyll fluorescence changes were analysed during the induction with high irradiance and the subsequent relaxation in darkness. DTT treatment caused the well-known decrease in NPQ induction and expectedly resulted in a disturbed photosynthetic electron flow. The relaxation curves of Y(NPQ), formally representing the quantum yield of the regulatory thermal dissipation, revealed a DTT dose-dependent decrease in amplitude not only of qE, but also of qX, up to the complete disappearance of the latter. Modelling of the relaxation curves under alternative scenarios led to the conclusion that DTT is permissive with respect to qX induction but suppresses its dark relaxation. The strong dependence of qX on the chloroplast redox state is discussed with respect to its proposed energy-spillover photoprotective significance in a lycophyte.


Subject(s)
Chlorophyll/metabolism , Dithiothreitol/pharmacology , Fluorescence , Selaginellaceae/drug effects , Selaginellaceae/metabolism , Photosynthesis/drug effects , Photosystem II Protein Complex/metabolism , Selaginellaceae/cytology
9.
Plants (Basel) ; 9(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353199

ABSTRACT

Microalgae are photosynthetic microorganisms and are considered excellent candidates for a wide range of biotechnological applications, including the removal of nutrients from urban wastewaters, which they can recover and convert into biomass. Microalgae-based systems can be integrated into conventional urban wastewater treatment plants (WW-TP) to improve the water depuration process. However, microalgal strain selection represents a crucial step for effective phytoremediation. In this work, a microalga isolated from the effluent derived from the thickening stage of waste sludge of an urban WW-TP was selected and tested to highlight its potential for nutrient removal. Ammonium and phosphate abatements by microalgae were evaluated using both the effluent and a synthetic medium in a comparative approach. Parallelly, the isolate was characterized in terms of growth capability, morphology, photosynthetic pigment content and photosystem II maximum quantum yield. The isolated microalga showed surprisingly high biomass yield and removal efficiency of both ammonium and phosphate ions from the effluent but not from the synthetic medium. This suggests its clear preference to grow in the effluent, linked to the overall characteristics of this matrix. Moreover, biomass from microalgae cultivated in wastewater was enriched in photosynthetic pigments, polyphosphates, proteins and starch, but not lipids, suggesting its possible use as a biofertilizer.

10.
World J Microbiol Biotechnol ; 35(2): 35, 2019 Feb 02.
Article in English | MEDLINE | ID: mdl-30712106

ABSTRACT

As major primary producers in marine environments, diatoms are considered a valuable feedstock of biologically active compounds for application in several biotechnological fields. Due to their metabolic plasticity, especially for light perception and use and in order to make microalgal production more environmentally sustainable, marine diatoms are considered good candidates for the large-scale cultivation. Among physical parameters, light plays a primary role. Even if sunlight is cost-effective, the employment of artificial light becomes a winning strategy if a high-value microalgal biomass is produced. Several researches on marine diatoms are designed to study the influence of different light regimens to increase biomass production enriched in biotechnologically high-value compounds (lipids, carotenoids, proteins, polysaccharides), or with emphasised photonic properties of the frustule.


Subject(s)
Biological Products/metabolism , Biotechnology , Diatoms/metabolism , Diatoms/radiation effects , Microalgae/metabolism , Microalgae/radiation effects , Diatoms/genetics , Diatoms/growth & development , Light , Microalgae/genetics , Microalgae/growth & development
11.
PLoS One ; 13(12): e0207630, 2018.
Article in English | MEDLINE | ID: mdl-30517139

ABSTRACT

It is important to characterize the microorganisms involved in biodeterioration processes to understand their effects on cultural assets and to define an efficient strategy for protecting artworks, monuments, and buildings from microbiological recolonization. In this study, we analyzed the microbial communities dwelling on the verso (front) and recto (back) sides of a 17th century easel painting attributed to Carlo Bononi, an Italian artist of the first Baroque period. Cultivable bacteria and fungi colonizing the painting were isolated and identified in order to characterize the microbial community possibly involved in deteriorating the pictorial layer of the painting. The isolated bacterial strains belonged to the Staphylococcus and Bacillus genera. Furthermore, culture-dependent techniques and SEM/EDS analyses revealed the presence of filamentous fungi of the genera Aspergillus, Penicillium, Cladosporium, and Alternaria. The chemical compositions of pigments were consistent with typical 17th century paintings, and some of the identified pigments, namely red lac and red and yellow earths, could be exploited as nutrient sources by painting-associated microorganisms. The study also evaluated, in vitro, the potential decontaminating activity of a biocompound, containing spores of Bacillus subtilis, Bacillus pumilus, and Bacillus megaterium. The results indicated the ability of this biocompound to counteract the growth of contaminating microorganisms that are potentially dangerous to the painting, suggesting the potential use of these microorganisms to prevent biodeterioration of artworks.


Subject(s)
Paintings/history , Anti-Infective Agents , Bacillus/metabolism , Bacteria/isolation & purification , Biodegradation, Environmental , Coloring Agents/chemistry , Fungi/isolation & purification , History, 17th Century , Italy , Microbiota , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Spores, Bacterial/metabolism
12.
Plant Physiol Biochem ; 130: 215-223, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30014925

ABSTRACT

Basic understanding of the photosynthetic physiology of the oleaginous green microalga Ettlia oleoabundans is still very limited, including the modulation of the photosynthetic membrane upon metabolism conversion from autotrophy to mixotrophy. It was previously reported that, upon glucose supply in the culture medium, E. oleoabundans preserves photosystem II (PSII) from degradation by virtue of a higher packing of thylakoid complexes. In this work, it was investigated whether in the mixotrophic exponential growth phase the PSII activity is merely preserved or even enhanced. Modulated fluorescence parameters were then recorded under short-term treatments with increasing irradiance values of white light. It was found that the mixotrophic microalga down-regulated the chlororespiratory electron recycling from photosystem I (PSI), but enhanced the linear electron flow from PSII to PSI. Ability to keep PSII more open than in autotrophic growth conditions indicated that the respiration of the glucose taken up from the medium fed the carbon fixing reactions with CO2. The overall electron poise was indeed well regulated, with a lesser need for thermal dissipation of excess absorbed energy. It is proposed that the significant, though small, increase in PSII maximum quantum yield in mixotrophic cells just reflects an improved light energy use and an increased photochemical capacity as compared to the autotrophic cells.


Subject(s)
Chlorophyta/metabolism , Electron Transport , Photosynthesis , Carbon Dioxide/metabolism , Glucose/metabolism , Light , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism
13.
Biochim Biophys Acta Bioenerg ; 1859(10): 1025-1038, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29803724

ABSTRACT

The flexible association of the light harvesting complex II (LHCII) to photosystem (PS) I and PSII to balance their excitation is a major short-term acclimation process of the thylakoid membrane, together with the thermal dissipation of excess absorbed energy, reflected in non-photochemical quenching of chlorophyll fluorescence (NPQ). In Pisum sativum, the leaf includes two main photosynthetic parts, the basal stipules and the leaflets. Since the stipules are less efficient in carbon fixation than leaflets, the adjustments of the thylakoid system, which safeguard the photosynthetic membrane against photodamage, were analysed. As compared to leaflets, the stipules experienced a decay in PSII photochemical activity. The supramolecular organization of photosystems in stipules showed a more conspicuous accumulation of large PSII-LHCII supercomplexes in the grana, but also a tendency to retain the PSI-LHCI-LHCII state transition complex and the PSI-LHCI-PSII-LHCII megacomplexes probably located at the interface between appressed and stroma-exposed membranes. As a consequence, stipules had a lower capacity to perform state transitions and the overall thylakoid architecture was less structurally flexible and ordered than in leaflets. Yet, stipules proved to be quite efficient in regulating the redox state of the electron transport chain and more capable of inducing NPQ than leaflets. It is proposed that, in spite of a relatively static thylakoid arrangement, LHCII interaction with both photosystems in megacomplexes can contribute to a regulated electron flow.

14.
New Phytol ; 211(2): 554-68, 2016 07.
Article in English | MEDLINE | ID: mdl-27058989

ABSTRACT

Vascular plants have evolved a long-term light acclimation strategy primarily relying on the regulation of the relative amounts of light-harvesting complex II (LHCII) and of the two photosystems, photosystem I (PSI) and photosystem II (PSII). We investigated whether such a model is also valid in Selaginella martensii, a species belonging to the early diverging group of lycophytes. Selaginella martensii plants were acclimated to three natural light regimes (extremely low light (L), medium light (M) and full sunlight (H)) and thylakoid organization was characterized combining ultrastructural, biochemical and functional methods. From L to H plants, thylakoid architecture was rearranged from (pseudo)lamellar to predominantly granal, the PSII : PSI ratio changed in favour of PSI, and the photochemical capacity increased. However, regulation of light harvesting did not occur through variations in the amount of free LHCII, but rather resulted from the flexibility of the association of free LHCII with PSII and PSI. In lycophytes, the free interspersed LHCII serves a fixed proportion of reaction centres, either PSII or PSI, and the regulation of PSI-LHCII(-PSII) megacomplexes is an integral part of long-term acclimation. Free LHCII ensures photoprotection of PSII, allows regulated use of PSI as an energy quencher, and can also quench endangered PSI.


Subject(s)
Acclimatization/radiation effects , Light-Harvesting Protein Complexes/metabolism , Light , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Selaginellaceae/physiology , Selaginellaceae/radiation effects , Darkness , Electron Transport/radiation effects , Kinetics , Oxidation-Reduction , Photosynthesis/radiation effects , Protein Binding/radiation effects , Solubility , Temperature , Thylakoids/metabolism , Thylakoids/radiation effects
15.
Appl Microbiol Biotechnol ; 99(24): 10597-609, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26300293

ABSTRACT

Neochloris oleoabundans (Chlorophyta) is widely considered one of the most promising microalgae for biotechnological applications. However, the large-scale production of microalgae requires large amounts of water. In this perspective, the possibility of using exhausted growth media for the re-cultivation of N. oleoabundans was investigated in order to simultaneously make the cultivation more economically feasible and environmentally sustainable. Experiments were performed by testing the following media: autotrophic exhausted medium (E+) and mixotrophic exhausted medium after cultivation with glucose (EG+) of N. oleoabundans cells grown in a 20-L photobioreactor (PBR). Both exhausted media were replenished with the same amounts of nitrate and phosphate as the control brackish medium (C). Growth kinetics, nitrate and phosphate consumption, photosynthetic pigments content, photosynthetic efficiency, cell morphology, and lipid production were evaluated. Moreover, the free fatty acid (FFA) composition of exhausted media and the polyamine (PA) concentrations of both algae and media were analyzed in order to test if some molecules, released into the medium, could influence algal growth and metabolism. Results showed that N. oleoabundans can efficiently grow in both exhausted media, if appropriately replenished with the main nutrients (E+ and EG+), especially in E+ and to the same extent as in C medium. Growth promotion of N. oleoabundans was attributed to PAs and alteration of the photosynthetic apparatus to FFAs. Taken together, results show that recycling growth medium is a suitable solution to obtain good N. oleoabundans biomass concentrations, while providing a more sustainable ecological impact on water resources.


Subject(s)
Chlorophyta/growth & development , Chlorophyta/metabolism , Culture Media/chemistry , Fatty Acids, Nonesterified/analysis , Polyamines/analysis
16.
Plant J ; 77(6): 893-905, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24450769

ABSTRACT

Evolution of vascular plants required compromise between photosynthesis and photodamage. We analyzed representative species from two divergent lineages of vascular plants, lycophytes and euphyllophytes, with respect to the response of their photosynthesis and light-harvesting properties to increasing light intensity. In the two analyzed lycophytes, Selaginella martensii and Lycopodium squarrosum, the medium phase of non-photochemical quenching relaxation increased under high light compared to euphyllophytes. This was thought to be associated with the occurrence of a further thylakoid phosphoprotein in both lycophytes, in addition to D2, CP43 and Lhcb1-2. This protein, which showed light intensity-dependent reversible phosphorylation, was identified in S. martensii as Lhcb6, a minor LHCII antenna subunit of PSII. Lhcb6 is known to have evolved in the context of land colonization. In S. martensii, Lhcb6 was detected as a component of the free LHCII assemblies, but also associated with PSI. Most of the light-induced changes affected the amount and phosphorylation of the LHCII assemblies, which possibly mediate PSI-PSII connectivity. We propose that Lhcb6 is involved in light energy management in lycophytes, participating in energy balance between PSI and PSII through a unique reversible phosphorylation, not yet observed in other land plants.


Subject(s)
Light-Harvesting Protein Complexes/metabolism , Lycopodium/metabolism , Photosynthesis/radiation effects , Selaginellaceae/metabolism , Amino Acid Sequence , Base Sequence , Chlorophyll/metabolism , DNA, Complementary/chemistry , DNA, Complementary/genetics , Light , Light-Harvesting Protein Complexes/radiation effects , Lycopodium/radiation effects , Molecular Sequence Data , Phosphorylation , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/radiation effects , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/radiation effects , Plant Proteins/metabolism , Plant Proteins/radiation effects , RNA, Plant/genetics , Selaginellaceae/radiation effects , Sequence Analysis, DNA , Species Specificity , Thylakoids/metabolism , Thylakoids/radiation effects
17.
Protoplasma ; 251(3): 639-48, 2014 May.
Article in English | MEDLINE | ID: mdl-24158375

ABSTRACT

The high cost of recombinant enzymes for the production of biofuel from ligno-cellulosic biomass is a crucial factor affecting the economic sustainability of the process. The use of plants as biofactories for the production of the suitable recombinant enzymes might be an alternative to microbial fermentation. In the case of enzyme accumulation in chloroplasts, it is fundamental to focus on the issue of full photosynthetic efficiency of transplastomic plants in the field where they might be exposed to abiotic stress such as high light intensity and high temperature. Xylanases (EC 3.2.1.8), a group of enzymes that hydrolyse linear polysaccharides of beta-1,4-xylan into xylose, find an application in the biofuel industry favouring biomass saccharification along with other cell-wall degrading enzymes. In the present study, we analysed how a high level of accumulation of a thermostable xylanase in tobacco chloroplasts does not impact on photosynthetic performance of transplastomic plants grown outdoors. The recombinant enzyme was found to be stable during plant development, ex planta and after long-term storage.


Subject(s)
Chloroplasts/enzymology , Molecular Farming , Nicotiana/enzymology , Xylosidases/biosynthesis , Chloroplasts/genetics , Photosynthesis , Plants, Genetically Modified , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Nicotiana/genetics , Xylosidases/genetics
18.
Protoplasma ; 251(1): 115-25, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23893305

ABSTRACT

In the recent years, the studies concerning the cultivation of Neochloris oleoabundans for biofuel purposes have increased, in relation to its capability to accumulate lipids when grown under nutrient starvation. Unfortunately, this cultivation mode does not allow to reach high biomass densities, which are required to improve the feasibility of the process. Increasing knowledge of the microalgal physiology is necessary to obtain new useful information for the improvement of culture performance in the perspective of large-scale cultivation. In this work, the mixotrophic cultivation of N. oleoabundans in a brackish medium added with different glucose concentrations has been tested under shaking, with the aim of stimulating growth alongside lipid accumulation inside cells. Cell morphology, glucose consumption, photosynthetic pigment content and photosynthetic efficiency were also investigated. Among all tested glucose concentrations (0-30 g L(-1)), it was observed that 2.5 g L(-1) was the optimal concentration, allowing to obtain the best compromise between glucose supplement, biomass production and lipid accumulation. Growth was highly enhanced in mixotrophic cultures, linked to the release of cells from sporocysts. A unique feature characterising mixotrophy in N. oleoabundans was the promotion of the maximum quantum yield of Photosystem II. Moreover, when mixotrophic cells entered the stationary phase, high lipid accumulation was induced. This study shows that the addition of glucose to N. oleoabundans remarkably increases the production of biomass enriched in lipids and represents an advancement for the cultivation of this microalga for applied purposes.


Subject(s)
Biomass , Chlorophyta/drug effects , Chlorophyta/growth & development , Glucose/pharmacology , Lipids/biosynthesis , Chloroplasts/ultrastructure , Dose-Response Relationship, Drug , Fluorometry , Photosynthesis , Sweetening Agents/pharmacology
19.
Plant Physiol Biochem ; 70: 387-95, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23831948

ABSTRACT

The aquatic plant Trapa natans L. is highly resistant to Mn and moderately resistant to Mo, mainly thanks to its ability to sequestrate the metals by chelation in the vacuole. Excess of Mn and Mo causes somewhat aspecific toxicity symptoms in plants, but the main target of their toxicity seems to be the photosynthetic process. In this work, we aimed at understanding how the effect on photosynthesis caused by Mn (130 µM, full recovery) or Mo (50 µM, partial recovery) in T. natans is linked to changes occurring in the photosynthetic apparatus, with emphasis on Photosystem II (PSII), during a 10 day treatment with these metals. The time-course of net photosynthesis, photosynthetic pigment content, amount of PSII and its peripheral antenna LHCII, and room-temperature fluorescence emission ratios F694/F680 and F700/(F685 + F695) showed that the early inhibiting effect of Mo and Mn (one day exposure) was essentially non-specific with respect to the metal, though more marked in Mo- than in Mn-treated plants. During the subsequent recovery phase, Mo still impaired PSII assembly and, consequently, photosynthesis could not reach the control values. Conversely, in Mn-treated plants the amount of PSII was fully re-established, as was photosynthesis, but the metal induced the accumulation of LHCII. The extent of inhibition and the effectiveness of photosynthesis recovery are proposed to reflect the different ability of T. natans to sequestrate safely excess Mn or Mo in vacuoles.


Subject(s)
Light-Harvesting Protein Complexes/metabolism , Magnoliopsida/drug effects , Manganese/pharmacology , Molybdenum/pharmacology , Photosynthesis/drug effects , Photosystem II Protein Complex/metabolism , Plant Leaves/drug effects , Magnoliopsida/metabolism , Magnoliopsida/physiology , Manganese/metabolism , Molybdenum/metabolism , Plant Leaves/physiology , Stress, Physiological , Vacuoles/drug effects , Vacuoles/metabolism
20.
Plant Physiol Biochem ; 63: 140-50, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23262182

ABSTRACT

The low photosynthetic activity of fleshy green fruits is currently attributed to their special anatomy rather than to a down-regulation of photosystem II (PSII). However, it is unclear whether the organization of PSII, which is highly conserved in leaves, is also shared by non-foliar structures, such as fleshy fruits. To obtain new information on this aspect, the photosynthetic activity and the organization of PSII were investigated in the berry of Arum italicum Miller during maturation (ivory to green) and early ripening (green to yellow). The berry developed an "internal CO(2) recycling" photosynthesis; gross photosynthesis at the green stage was 25% of the leaf lamina. SDS-PAGE, BN-PAGE and 77 K spectrofluorimetry showed that the thylakoid membrane accumulated a very high amount of free LHCII trimers and only few PSII and PSI complexes. The pattern of PSII forms was similar to that of the lamina (monomers, dimers, LHCII-PSII supercomplexes), but increase in CP43-less PSII cores and low F695/F680 fluorescence ratio at room temperature indicated that PSII was less stable than in the leaf lamina. Beside effective PSII photoprotection, we propose that LHCII serves as a temporary storage of chlorophylls to provide a visual signal that fruit is not mature for seed dispersal. We conclude that the low photosynthetic activity of A. italicum berry depends on the scantiness of reaction centres and the reduced functionality of PSII.


Subject(s)
Arum/metabolism , Fruit/metabolism , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Chlorophyll/metabolism , Electrophoresis, Polyacrylamide Gel
SELECTION OF CITATIONS
SEARCH DETAIL
...