Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 670: 1068-1074, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31018422

ABSTRACT

Copper nanoparticles (NCu) may co-exist with other pollutants in agricultural soils, such as pesticides. However, this has been little evaluated yet. Thus, possible effects of the simultaneous applications of pesticides and NCu on biogeochemical cycles are expected, for example on the nitrogen cycle. Therefore, the aim of this work was to evaluate the effect of simultaneous application of the herbicide atrazine (ATZ) and NCu on the abundance of total bacteria and nitrifying communities: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Moreover, the ATZ dissipation was evaluated. A soil-plant system containing ATZ at field dose (3 mg a.i. kg-1) was mixed with two doses of NCu (0.05% or 0.15% w/w). Changes in the abundance of 16S rRNA and ammonia monooxygenase (amoA) genes of AOA and AOB were evaluated by real-time quantitative PCR (qPCR) at three sampling times (1, 15 and 30 days). The residual ATZ and nitrate production were also measured. The results showed significant differences in microbial composition and abundance over the 30 days of the experiment. Particularly, an initial decrease was observed in total bacterial abundance due to the presence of ATZ and NCu respect to ATZ alone (~60%). The abundance of AOA was also remarkably reduced (~85%), but these communities gradually recovered towards the end of the experiment. Conversely, AOB abundance initially increased (>100%) and remained mainly unaltered in soil exposed to ATZ and NCu 0.15% w/w, where nitrate formation was also constant. Moreover, NCu decreased the ATZ dissipation, which was translated in a 2-fold increase on the ATZ half-life values (T1/2). This study demonstrates that the simultaneous presence of NCu and ATZ may represent a risk for the total bacteria present in soil and sensitive microorganisms such as nitrifying communities, and changes in the dissipation of the pesticide could influence this process.


Subject(s)
Archaea/physiology , Atrazine/adverse effects , Bacterial Physiological Phenomena , Copper/adverse effects , Herbicides/adverse effects , Metal Nanoparticles/adverse effects , Soil Pollutants/adverse effects , Genes, Bacterial , Nitrogen Cycle , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Soil Microbiology
2.
Crit Rev Biotechnol ; 39(2): 157-172, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30396282

ABSTRACT

Metal nanoparticles and metal oxides nanoparticles (MNPs/MONPs) have been widely included in a great diversity of products and industrial applications and they are already a part of our everyday life. According to estimation studies, their production is expected to increase exponentially in the next few years. Consequently, soil has been suggested as the main sink of MNPs/MONPs once they are deliberately or accidentally released into the environment. The potential negative perturbations that may result on soil microbial communities and ecological processes are resulting in concerns. Several nano-toxicological studies of MNPs/MONPs, reported so far, have focused on aquatic organisms, animals, and soil invertebrates. However, during recent years, the studies have been oriented to understand the effects of MNPs/MONPs on microbial communities and their interaction with soil components. The studies have suggested that MNPs/MONPs are one of the most toxic type to soil biota, amongst different types of nanomaterials. This may threaten soil health and fertility, since microbial communities are known to support important biological processes and ecosystem services such as the nutrient cycling, whereby their protection against the environmental pollution is imperative. Therefore, in this review we summarize the actual knowledge available from the last five years (2013-2018) and gaps about the potential negative, positive or neutral effects produced on soil by different classes of MNPs/MONPs. A particular emphasis has been placed on the associated soil microorganisms and biological processes. Finally, perspectives about future research are discussed.


Subject(s)
Metal Nanoparticles , Metals , Oxides , Soil Microbiology , Soil Pollutants , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Metals/chemistry , Metals/toxicity , Microbiota , Nanotechnology , Oxides/chemistry , Oxides/toxicity , Soil/chemistry , Soil Pollutants/chemistry , Soil Pollutants/toxicity
3.
Nat Commun ; 7: 10275, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26754412

ABSTRACT

Spintronic computing promises superior energy efficiency and nonvolatility compared to conventional field-effect transistor logic. But, it has proven difficult to realize spintronic circuits with a versatile, scalable device design that is adaptable to emerging material physics. Here we present prototypes of a logic device that encode information in the position of a magnetic domain wall in a ferromagnetic wire. We show that a single three-terminal device can perform inverter and buffer operations. We demonstrate one device can drive two subsequent gates and logic propagation in a circuit of three inverters. This prototype demonstration shows that magnetic domain wall logic devices have the necessary characteristics for future computing, including nonlinearity, gain, cascadability, and room temperature operation.

4.
Nat Mater ; 14(11): 1130-4, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26413986

ABSTRACT

Charge-transfer (CT) states, bound combinations of an electron and a hole on separate molecules, play a crucial role in organic optoelectronic devices. We report direct nanoscale imaging of the transport of long-lived CT states in molecular organic donor-acceptor blends, which demonstrates that the bound electron-hole pairs that form the CT states move geminately over distances of 5-10 nm, driven by energetic disorder and diffusion to lower energy sites. Magnetic field dependence reveals a fluctuating exchange splitting, indicative of a variation in electron-hole spacing during diffusion. The results suggest that the electron-hole pair of the CT state undergoes a stretching transport mechanism analogous to an 'inchworm' motion, in contrast to conventional transport of Frenkel excitons. Given the short exciton lifetimes characteristic of bulk heterojunction organic solar cells, this work confirms the potential importance of CT state transport, suggesting that CT states are likely to diffuse farther than Frenkel excitons in many donor-acceptor blends.

6.
Opt Express ; 18 Suppl 1: A79-90, 2010 Apr 26.
Article in English | MEDLINE | ID: mdl-20588577

ABSTRACT

Luminescent solar concentrators (LSCs) use dye molecules embedded in a flat-plate waveguide to absorb solar radiation. Ideally, the dyes re-emit the absorbed light into waveguide modes that are coupled to solar cells. But some photons are always lost, re-emitted through the face of the LSC and coupled out of the waveguide. In this work, we improve the fundamental efficiency limit of an LSC by controlling the orientation of dye molecules using a liquid crystalline host. First, we present a theoretical model for the waveguide trapping efficiency as a function of dipole orientation. Next, we demonstrate an increase in the trapping efficiency from 66% for LSCs with no dye alignment to 81% for a LSC with vertical dye alignment. Finally, we show that the enhanced trapping efficiency is preserved for geometric gains up to 30, and demonstrate that an external diffuser can alleviate weak absorption in LSCs with vertically-aligned dyes.

7.
Opt Express ; 18 Suppl 1: A91-9, 2010 Apr 26.
Article in English | MEDLINE | ID: mdl-20588578

ABSTRACT

We describe Linearly Polarized Luminescent Solar Concentrators (LP-LSCs) to replace conventional, purely absorptive, linear polarizers in energy harvesting applications. As a proof of concept, we align 3-(2-Benzothiazolyl)-N,N-diethylumbelliferylamine (Coumarin 6) and 4-dicyanomethyl-6-dimethylaminostiryl-4H-pyran (DCM) dye molecules linearly in the plane of the substrate using a polymerizable liquid crystal host. We show that up to 38% of the photons polarized on the long axis of the dye molecules can be coupled to the edge of the device for an LP-LSC based on Coumarin 6 with an order parameter of 0.52.

8.
Opt Express ; 18(9): A79-90, 2010 Apr 26.
Article in English | MEDLINE | ID: mdl-20607889

ABSTRACT

Luminescent solar concentrators (LSCs) use dye molecules embedded in a flat-plate waveguide to absorb solar radiation. Ideally, the dyes re-emit the absorbed light into waveguide modes that are coupled to solar cells. But some photons are always lost, re-emitted through the face of the LSC and coupled out of the waveguide. In this work, we improve the fundamental efficiency limit of an LSC by controlling the orientation of dye molecules using a liquid crystalline host. First, we present a theoretical model for the waveguide trapping efficiency as a function of dipole orientation. Next, we demonstrate an increase in the trapping efficiency from 66% for LSCs with no dye alignment to 81% for a LSC with vertical dye alignment. Finally, we show that the enhanced trapping efficiency is preserved for geometric gains up to 30, and demonstrate that an external diffuser can alleviate weak absorption in LSCs with vertically-aligned dyes.

9.
Opt Express ; 18(9): A91-9, 2010 Apr 26.
Article in English | MEDLINE | ID: mdl-20607891

ABSTRACT

We describe Linearly Polarized Luminescent Solar Concentrators (LP-LSCs) to replace conventional, purely absorptive, linear polarizers in energy harvesting applications. As a proof of concept, we align 3-(2-Benzothiazolyl)-N,N-diethylumbelliferylamine (Coumarin 6) and 4- dicyanomethyl-6-dimethylaminostiryl-4H-pyran (DCM) dye molecules linearly in the plane of the substrate using a polymerizable liquid crystal host. We show that up to 38% of the photons polarized on the long axis of the dye molecules can be coupled to the edge of the device for an LP-LSC based on Coumarin 6 with an order parameter of 0.52.

10.
Nat Mater ; 6(5): 374-8, 2007 May.
Article in English | MEDLINE | ID: mdl-17417644

ABSTRACT

Organic light-emitting devices (OLEDs) are a promising technology for flat-panel displays and solid-state lighting. While OLED efficiencies have increased dramatically in recent years, further progress is complicated by the fact that the vast majority of organic materials are fluorescent and therefore emit only from molecular excited states ('excitons') with spin 0, or 'singlet' spin symmetry. Here, we demonstrate the ability to manipulate the fraction of excitons which form as singlets in fluorescent materials by altering the OLED structure. We insert a mixing layer that affects only charge-transfer (CT) states, which are the precursors to excitons. As a result, we triple the singlet fraction and the efficiency of the red fluorophore DCM2. We term fluorescence enhanced by CT spin mixing 'extrafluorescence', and show that its origin is in part an inversion of the usual energetic ordering of the singlet and triplet CT states.

11.
Anal Chem ; 79(9): 3298-303, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17397135

ABSTRACT

We apply percolation theory to explain the operation of multiple-use gas sensors based on organic field effect transistors (OFETs). For reversible operation, we predict that energetic disorder in the channel can obscure interactions with the analyte, because chemically induced traps are overwhelmed by the natural disorder. Consequently, the sensitivity of an energetically disordered OFET-based chemical sensor is significantly inferior to the ideal disorder-free case. Current modulation in disordered OFETs is predicted to rely on morphological alteration of percolation paths. The theory is compared to results from an array of metal phthalocyanine (MPC) transistors exposed to low concentrations of solvents. Despite the presence of very large adsorption fractions of solvent on the channel, the current modulation is small, consistent with theory. Chemical selectivity is possible, however, because the central metal atom of the MPC determines the strength of the solvent-MPC interaction, which in turn determines the amount of solvent adsorbed on the OFET channel. This work suggests that OFET-based sensors may be better suited to applications where the analyte binding energy exceeds the intrinsic energetic disorder of the organic semiconductor.

12.
Opt Express ; 15(4): 1762-72, 2007 Feb 19.
Article in English | MEDLINE | ID: mdl-19532414

ABSTRACT

We extend the model of Chance, Prock and Silbey [1] and analytically determine the Poynting vector in the direction perpendicular to the plane of a multilayer organic device. The result is used to predict the spatial profile of Förster energy transfer, the radiative output of an organic light emitting device, and to calculate the efficiency of surface plasmon polariton-mediated energy transfer across a thin silver film.

13.
Phys Rev Lett ; 94(13): 137403, 2005 Apr 08.
Article in English | MEDLINE | ID: mdl-15904034

ABSTRACT

Double-modulation (DM) photoluminescence (PL) detected magnetic resonance (PLDMR) measurements on poly(2-methoxy-5-(2(')-ethyl)-hexoxy-1,4-phenylene vinylene) are described. In these measurements, the laser excitation power is modulated at 1

14.
Article in English | MEDLINE | ID: mdl-8081540

ABSTRACT

Africanized honey bees and the wasp Polistes versicolor are common insects in Brazil; their venoms are composed of a complex mixture of components which present several biological activities. Stinging accidents are very frequent and are generally followed by important clinical reactions, and even deaths are not uncommon. In the present study, venom was extracted from Africanized honey bees and P. versicolor, and it was biochemically characterized and the antigenic cross-reactivity was investigated by Western blot analysis and specific IgE determination by ELISA in the sera of subjects allergic to each venom. The honey bee venom presented higher phospholipase A2 and hyaluronidase activities than P. versicolor venom, which in turn presented higher lipase, acid phosphatase and esterase activities. A high incidence of false-negatives was also observed during determinations of specific IgE for P. versicolor venom when the kits with venoms from wasps of temperate climates were used, suggesting that the diagnosis of allergy to neotropical wasp venom must take into consideration the clinical history and skin tests.


Subject(s)
Bee Venoms/immunology , Wasp Venoms/immunology , Adolescent , Adult , Bee Venoms/analysis , Child , Cross Reactions , Female , Humans , Immunoglobulin E/blood , Male , Middle Aged , Molecular Weight , Wasp Venoms/analysis
15.
Analyst ; 116(9): 933-6, 1991 Sep.
Article in English | MEDLINE | ID: mdl-1759720

ABSTRACT

The acidity induced by the action of bacteria in milk samples was monitored amperometrically by using a platinum microelectrode. The measurements were performed directly on commercial packs of milk, stored at 32 degrees C, and were continued for 9-10 d after inoculation. The data were compared with those obtained by measuring the pH of the samples and the results are discussed on the basis of the metabolism of each bacterial species. The effects of the following bacteria were examined: Staphylococcus aureus, Bacillus cereus, Streptococcus faecalis, Bacillus subtilis, Aeromonas, and Corynebacterium.


Subject(s)
Food Contamination/analysis , Milk/analysis , Animals , Electrochemistry , Food Microbiology , Hydrogen-Ion Concentration , Microelectrodes , Milk/microbiology , Platinum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...