Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Type of study
Publication year range
1.
Biomed Mater ; 7(1): 011001, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22241396

ABSTRACT

Giemsa was first used as a fluorescent dye for mineralized bone and cartilage in tissue sections. The aim of this study was to establish the use of Giemsa as a fluorescent dye for mineralizing bone-like nodules produced in cell cultures. Osteoblasts were grown under mineralizing conditions for 14 days, producing typical bone-like nodules. Upon staining with Giemsa stock solution for 1 min, the mineralizing nodules could be selectively visualized emitting intense green and red fluorescence when observed under blue and green illumination, respectively. The textural details of the nodules were clearly observed under fluorescence microscopy, allowing to identify regions with different degrees of mineralization. The mineralized nature of the nodules was confirmed using von Kossa's method, Alizarin Red S staining and x-ray mapping for Ca and P in a scanning electron microscope, showing a strong correlation between the mineralizing and the fluorescent nodules. The selective fluorescence was related to the mineral phase, being absent in decalcified samples. The use of Giemsa as a fluorescent dye for mineralizing bone-like nodules presents a simple alternative method to quickly analyze biomineralization assays in vitro under fluorescence microscopy, particularly in the biological evaluation of biomaterials.


Subject(s)
Azure Stains , Bone Density/physiology , Calcification, Physiologic/physiology , Fluorescent Dyes , Microscopy, Fluorescence/methods , Osteoblasts/cytology , Osteoblasts/physiology , Animals , Biomimetic Materials , Cell Line , Mice , Osteogenesis/physiology
2.
Calcif Tissue Int ; 89(5): 358-71, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21901516

ABSTRACT

Cell cultures are often used to study bone mineralization; however, not all systems achieve a bone-like matrix formation. In this study, the mineralized matrix assembled in F-OST osteoblast cultures was analyzed, with the aim of establishing a novel model for bone mineralization. The ultrastructure of the cultures was investigated using scanning electron microscopy, atomic force microscopy, and transmission electron microscopy (TEM). The mineral phase was characterized using conventional and high-resolution TEM, energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and solid-state (31)P and (1)H nuclear magnetic resonance. F-OST osteoblast cultures presented a clear nodular mineralization pattern. The chief features of the mineralizing nodules were globular accretions ranging from about 100 nm to 1.5 µm in diameter, loaded with needle-shaped crystallites. Accretions seemed to bud from the cell membrane, increase in size, and coalesce into larger ones. Arrays of loosely packed, randomly oriented collagen fibrils were seen along with the accretions. Mineralized fibrils were often observed, sometimes in close association with accretions. The mineral phase was characterized as a poorly crystalline hydroxyapatite. The Ca/P atomic ratio was 1.49 ± 0.06. The presence of OH was evident. The lattice parameters were a = 9.435 Å and c = 6.860 Å. The average crystallite size was 20 nm long and 10 nm wide. Carbonate substitutions were seen in phosphate and OH sites. Water was also found within the apatitic core. In conclusion, F-OST osteoblast cultures produce a bone-like matrix and may provide a good model for bone mineralization studies.


Subject(s)
Bone Matrix/ultrastructure , Osteoblasts/cytology , Animals , Bone Matrix/chemistry , Calcification, Physiologic , Cells, Cultured , Durapatite/metabolism , Mice , Mice, Inbred BALB C , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Osteoblasts/metabolism , Osteoblasts/ultrastructure , Spectroscopy, Fourier Transform Infrared
3.
Braz J Med Biol Res ; 40(8): 1101-9, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17665047

ABSTRACT

Children with chronic renal failure in general present growth retardation that is aggravated by corticosteroids. We describe here the effects of methylprednisolone (MP) and recombinant human growth hormone (rhGH) on the growth plate (GP) of uremic rats. Uremia was induced by subtotal nephrectomy in 30-day-old rats, followed by 20 IU kg-1 day-1 rhGH (N = 7) or 3 mg kg-1 day-1 MP (N = 7) or 20 IU kg-1 day-1 rhGH + 3 mg kg-1 day-1 MP (N = 7) treatment for 10 days. Control rats with intact renal function were sham-operated and treated with 3 mg kg-1 day-1 MP (N = 7) or vehicle (N = 7). Uremic rats (N = 7) were used as untreated control animals. Structural alterations in the GP and the expression of anti-proliferating cell nuclear antigen (PCNA) and anti-insulin-like growth factor I (IGF-I) by epiphyseal chondrocytes were evaluated. Uremic MP rats displayed a reduction in the proliferative zone height (59.08 +/- 4.54 vs 68.07 +/- 7.5 microm, P < 0.05) and modifications in the microarchitecture of the GP. MP and uremia had an additive inhibitory effect on the proliferative activity of GP chondrocytes, lowering the expression of PCNA (19.48 +/- 11.13 vs 68.64 +/- 7.9% in control, P < 0.0005) and IGF-I (58.53 +/- 0.96 vs 84.78 +/- 2.93% in control, P < 0.0001), that was counteracted by rhGH. These findings suggest that in uremic rats rhGH therapy improves longitudinal growth by increasing IGF-I synthesis in the GP and by stimulating chondrocyte proliferation.


Subject(s)
Glucocorticoids/pharmacology , Growth Plate/drug effects , Human Growth Hormone/pharmacology , Methylprednisolone/pharmacology , Uremia/metabolism , Animals , Autoantibodies/metabolism , Cell Proliferation , Chondrocytes/drug effects , Female , Growth Plate/metabolism , Growth Plate/pathology , Humans , Insulin-Like Growth Factor I/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Rats , Rats, Wistar , Tibia/drug effects , Tibia/pathology , Uremia/pathology
4.
Braz. j. med. biol. res ; 40(8): 1101-1109, Aug. 2007. tab, ilus
Article in English | LILACS | ID: lil-456807

ABSTRACT

Children with chronic renal failure in general present growth retardation that is aggravated by corticosteroids. We describe here the effects of methylprednisolone (MP) and recombinant human growth hormone (rhGH) on the growth plate (GP) of uremic rats. Uremia was induced by subtotal nephrectomy in 30-day-old rats, followed by 20 IU kg-1 day-1 rhGH (N = 7) or 3 mg kg-1 day-1 MP (N = 7) or 20 IU kg-1 day-1 rhGH + 3 mg kg-1 day-1 MP (N = 7) treatment for 10 days. Control rats with intact renal function were sham-operated and treated with 3 mg kg-1 day-1 MP (N = 7) or vehicle (N = 7). Uremic rats (N = 7) were used as untreated control animals. Structural alterations in the GP and the expression of anti-proliferating cell nuclear antigen (PCNA) and anti-insulin-like growth factor I (IGF-I) by epiphyseal chondrocytes were evaluated. Uremic MP rats displayed a reduction in the proliferative zone height (59.08 ± 4.54 vs 68.07 ± 7.5 æm, P < 0.05) and modifications in the microarchitecture of the GP. MP and uremia had an additive inhibitory effect on the proliferative activity of GP chondrocytes, lowering the expression of PCNA (19.48 ± 11.13 vs 68.64 ± 7.9 percent in control, P < 0.0005) and IGF-I (58.53 ± 0.96 vs 84.78 ± 2.93 percent in control, P < 0.0001), that was counteracted by rhGH. These findings suggest that in uremic rats rhGH therapy improves longitudinal growth by increasing IGF-I synthesis in the GP and by stimulating chondrocyte proliferation.


Subject(s)
Animals , Female , Humans , Rats , Glucocorticoids/pharmacology , Growth Plate/drug effects , Human Growth Hormone/pharmacology , Methylprednisolone/pharmacology , Uremia/metabolism , Autoantibodies/metabolism , Cell Proliferation , Chondrocytes/drug effects , Growth Plate/metabolism , Growth Plate/pathology , Insulin-Like Growth Factor I/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Rats, Wistar , Tibia/drug effects , Tibia/pathology , Uremia/pathology
6.
Calcif Tissue Int ; 75(2): 160-8, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15148560

ABSTRACT

Hepatitis C treatment with interferon alpha-2b (IFN-alpha) and ribavirin has been related to decreased bone mineral density. The aim of this study was to investigate the in vitro effects of different concentrations of ribavirin and IFN-alpha on osteoblast-like cells. Human osteoblast-like cells obtained by the outgrowth of cells from bone chips were exposed to ribavirin (0.1-10 microg/mL) or IFN-alpha (0.1-1000 UI/mL). At regular time-points, cultures were harvested for posterior analysis. Alkaline phosphatase (ALP) activity was determined on days 7 and 14, and cell growth was accessed by C3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and cell count on days 1, 3, 5, and 7. Flow cytometry analysis was used for investigating cell death on days 1, 3, 5, and 7. IFN-alpha affected ALP expression only at the higher concentration (1000 UI/mL) after 7 days (P < 0.05). No effects were detected in cell growth. In ribavirin treated cultures, concentrations higher than 2.5 microg/mL were associated with a decrease in ALP activity within 7 and 14 days (P < 0.01 and P < 0.001, respectively). Furthermore, the reduction in cell growth was dose-dependent and was detected after the fifth day. This decrease can be explained by an increase in the number of dead cells and a decrease in cell proliferation. In conclusion, our experiments demonstrated that ribavirin reduced, in a time- and dose-dependent manner, the number of metabolically active cells through a decrease in proliferation and an increase in cell death, and induced an impairment in osteoblast differentiation. These negative effects of ribavirin on osteblast-like cells might contribute to the bone loss reported in vivo.


Subject(s)
Bone Development/physiology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Osteoblasts/drug effects , Osteoporosis/chemically induced , Ribavirin/toxicity , Alkaline Phosphatase/drug effects , Alkaline Phosphatase/metabolism , Bone Development/drug effects , Cell Death/drug effects , Cell Death/physiology , Cell Differentiation/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Interferon alpha-2 , Interferon-alpha/adverse effects , Osteoblasts/cytology , Osteoblasts/metabolism , Osteoporosis/metabolism , Osteoporosis/physiopathology , Recombinant Proteins , Tetrazolium Salts , Thiazoles , Time Factors
7.
Microbes Infect ; 2(15): 1817-26, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11165925

ABSTRACT

Systemic production and mobilization of inflammatory cells and formation of hepatic periovular granulomas were studied in Schistosoma mansoni-infected mice with deficient interferon gamma (IFN-gamma) receptor (IFN-gammaR(o/o)). The impaired IFN-gamma signaling did not cause a significant modification of the overall kinetics of inflammatory cells, but mutant mice developed smaller hepatic periovular granulomas with a two-fold reduction in all the cell lineages. In granulomas of normal mice, the fully differentiated macrophages were progressively predominant, whilst in IFN-gammaR(o/o) mice, the granulomas contained a higher percentage of immature and proliferating monocytes. Granulomas of IFN-gammaR(o/o) mice had an enhanced and accelerated fibrotic reaction, corresponding to an increased content of proliferative and activated connective tissue cells. Simultaneously, their granulomas had an increased ratio of T over B cells, with an increase in CD8(+) and a reduction in CD4(+) T cells. The functional IFN-gamma receptor was not required for initial recruitment of monocytes and lymphocytes into granulomas, but it was necessary for the maturation of macrophages, upregulation of major histocompatibility class 2 (MHC-II) expression and consequent stimulation of lymphocyte subpopulations depending upon the MHC-II-mediated antigen presentation.


Subject(s)
Granuloma/immunology , Liver Diseases, Parasitic/immunology , Receptors, Interferon/deficiency , Schistosomiasis mansoni/immunology , Animals , Connective Tissue Cells/cytology , Connective Tissue Cells/immunology , Flow Cytometry , Granuloma/pathology , Granuloma/physiopathology , Liver Diseases, Parasitic/pathology , Liver Diseases, Parasitic/physiopathology , Lymphocytes/cytology , Lymphocytes/immunology , Macrophages/cytology , Macrophages/immunology , Mice , Mice, Knockout , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Schistosoma mansoni/growth & development , Schistosoma mansoni/pathogenicity , Schistosomiasis mansoni/pathology , Schistosomiasis mansoni/physiopathology , Interferon gamma Receptor
8.
Petropolis; Vozes; 19 ed; 2000. 86 p. ilus.
Monography in Portuguese | LILACS, Sec. Est. Saúde SP | ID: lil-407765
9.
Petropolis; Vozes; 5 ed; 1987. 86 p. ilus.
Monography in Portuguese | Sec. Munic. Saúde SP, EMS-Acervo | ID: sms-1955
SELECTION OF CITATIONS
SEARCH DETAIL
...