Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4240, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37454097

ABSTRACT

Biologists have long noted that endotherms tend to have larger bodies (Bergmann's rule) and shorter appendages (Allen's rule) in colder environments. Nevertheless, many taxonomic groups appear not to conform to these 'rules', and general explanations for these frequent exceptions are currently lacking. Here we note that by combining complementary changes in body and extremity size, lineages could theoretically respond to thermal gradients with smaller changes in either trait than those predicted by either Bergmann's or Allen's rule alone. To test this idea, we leverage geographic, ecological, phylogenetic, and morphological data on 6,974 non-migratory terrestrial bird species, and show that stronger family-wide changes in bill size over thermal gradients are correlated with more muted changes in body size. Additionally, we show that most bird families exhibit weak but appropriately directed changes in both traits, supporting the notion of complementarity in Bergmann's and Allen's rules. Finally, we show that the few families that exhibit significant gradients in either bill or body size, tend to be more speciose, widely distributed, or ecologically constrained. Our findings validate Bergmann's and Allen's logic and remind us that body and bill size are simply convenient proxies for their true quantity of interest: the surface-to-volume ratio.


Subject(s)
Birds , Extremities , Animals , Body Size , Phylogeny
2.
Proc Biol Sci ; 290(1995): 20222099, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36919431

ABSTRACT

Daily torpor allows endotherms to save energy during energetically stressful (e.g. cold) conditions. Although studies on avian torpor have mostly been conducted under laboratory conditions, information on the usage of torpor in the wild is limited to few, predominantly temperate-zone species. We studied torpor under seminatural conditions from 249 individuals from 29 hummingbird species across a 1920 m elevational gradient in the western Andes of Colombia using cloacal thermistors. Small birds were more likely to use torpor than large birds, but only at low ambient temperatures, where torpor was prolonged. We also found effects of proxy variables for body condition and energy expenditure on the use of torpor, its characteristics, and impacts. Our results suggest that context-dependency and phylogenetic variation in the probability of deploying torpor can help understand clade-wide patterns of elevational distribution in Andean hummingbirds.


Subject(s)
Birds , Energy Metabolism , Torpor , Animals , Humans , Birds/physiology , Cold Temperature , Energy Metabolism/physiology , Phylogeny , Torpor/physiology , Colombia , Altitude
3.
Psychopharmacology (Berl) ; 239(12): 3859-3873, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36269379

ABSTRACT

RATIONALE: In utero opioid exposure is associated with lower weight and a neonatal opioid withdrawal syndrome (NOWS) at birth, along with longer-term adverse neurodevelopmental outcomes and mood disorders. While NOWS is sometimes treated with continued opioids, clinical studies have not addressed if long-term neurobehavioral outcomes are worsened with continued postnatal exposure to opioids. In addition, pre-clinical studies comparing in utero only opioid exposure to continued post-natal opioid administration for withdrawal mitigation are lacking. OBJECTIVES: Here, we sought to understand the impact of continued postnatal opioid exposure on long term behavioral consequences. METHODS: We implemented a rodent perinatal opioid exposure model of oxycodone (Oxy) exposure that included Oxy exposure until birth (short Oxy) and continued postnatal opioid exposure (long Oxy) spanning gestation through birth and lactation. RESULTS: Short Oxy exposure was associated with a sex-specific increase in weight gain trajectory in adult male mice. Long Oxy exposure caused an increased weight gain trajectory in adult males and alterations in nociceptive processing in females. Importantly, there was no evidence of long-term social behavioral deficits, anxiety, hyperactivity, or memory deficits following short or long Oxy exposure. CONCLUSIONS: Our findings suggest that offspring with prolonged opioid exposure experienced some long-term sequelae compared to pups with opioid cessation at birth. These results highlight the potential long-term consequences of opioid administration as a mitigation strategy for clinical NOWS symptomology and suggest alternatives should be explored.


Subject(s)
Body-Weight Trajectory , Neonatal Abstinence Syndrome , Opioid-Related Disorders , Substance Withdrawal Syndrome , Pregnancy , Humans , Female , Infant, Newborn , Male , Mice , Animals , Oxycodone , Analgesics, Opioid , Neonatal Abstinence Syndrome/drug therapy , Neonatal Abstinence Syndrome/etiology , Substance Withdrawal Syndrome/drug therapy , Perception , Opioid-Related Disorders/drug therapy
4.
Ecol Lett ; 25(4): 939-947, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35142006

ABSTRACT

Anthropogenic climate change is rapidly altering local environments and threatening biodiversity throughout the world. Although many wildlife responses to this phenomenon appear largely idiosyncratic, a wealth of basic research on this topic is enabling the identification of general patterns across taxa. Here, we expand those efforts by investigating how avian responses to climate change are affected by the ability to cope with ecological variation through behavioural flexibility (as measured by relative brain size). After accounting for the effects of phylogenetic uncertainty and interspecific variation in adaptive potential, we confirm that although climate warming is generally correlated with major body size reductions in North American migrants, these responses are significantly weaker in species with larger relative brain sizes. Our findings suggest that cognition can play an important role in organismal responses to global change by actively buffering individuals from the environmental effects of warming temperatures.


Subject(s)
Birds , Climate Change , Animals , Biodiversity , Birds/physiology , Brain , Humans , Phylogeny
5.
BMC Evol Biol ; 20(1): 97, 2020 08 08.
Article in English | MEDLINE | ID: mdl-32770933

ABSTRACT

BACKGROUND: Was there a mid-Cenozoic vertebrate extinction and recovery event in Madagascar and, if so, what are its implications for the evolution of lemurs? The near lack of an early and mid-Cenozoic fossil record on Madagascar has inhibited direct testing of any such hypotheses. We compare the terrestrial vertebrate fauna of Madagascar in the Holocene to that of early Cenozoic continental Africa to shed light on the probability of a major mid-Cenozoic lemur extinction event, followed by an "adaptive radiation" or recovery. We also use multiple analytic approaches to test competing models of lemur diversification and the null hypothesis that no unusual mid-Cenozoic extinction of lemurs occurred. RESULTS: Comparisons of the terrestrial vertebrate faunas of the early Cenozoic on continental Africa and Holocene on Madagascar support the inference that Madagascar suffered a major mid-Cenozoic extinction event. Evolutionary modeling offers some corroboration, although the level of support varies by phylogeny and model used. Using the lemur phylogeny and divergence dates generated by Kistler and colleagues, RPANDA and TESS offer moderate support for the occurrence of unusual extinction at or near the Eocene-Oligocene (E-O) boundary (34 Ma). TreePar, operating under the condition of obligate mass extinction, found peak diversification at 31 Ma, and low probability of survival of prior lineages. Extinction at the E-O boundary received greater support than other candidate extinctions or the null hypothesis of no major extinction. Using the lemur phylogeny and divergence dates generated by Herrera & Dàvalos, evidence for large-scale extinction diminishes and its most likely timing shifts to before 40 Ma, which fails to conform to global expectations. CONCLUSIONS: While support for large-scale mid-Cenozoic lemur extinction on Madagascar based on phylogenetic modeling is inconclusive, the African fossil record does provide indirect support. Furthermore, a major extinction and recovery of lemuriforms during the Eocene-Oligocene transition (EOT) would coincide with other major vertebrate extinctions in North America, Europe, and Africa. It would suggest that Madagascar's lemurs were impacted by the climate shift from "greenhouse" to "ice-house" conditions that occurred at that time. This could, in turn, help to explain some of the peculiar characteristics of the lemuriform clade.


Subject(s)
Biological Evolution , Climate Change , Extinction, Biological , Fossils , Lemur/classification , Animals , Madagascar , Phylogeny
6.
Ecology ; 101(2): e02937, 2020 02.
Article in English | MEDLINE | ID: mdl-31750543

ABSTRACT

The paradoxical presence of toxic chemical compounds in ripe fruits represents a balance between plant enemies and allies: chemical traits can defend seeds against antagonistic herbivores, seed predators, or fungal pathogens, but also can impose costs by repelling mutualistic seed dispersers, although the costs are often difficult to quantify. Seeds gain fitness benefits from traveling far from the parent plant, as they can escape from parental competition and elude specialized herbivores as well as pathogens that accumulate on adult plants. However, seeds are difficult to follow from their parent plant to their final destination. Thus, little is known about the factors that determine seed dispersal distance. We investigated this potential cost of fruit secondary compounds, reduced seed dispersal distance, by combining two data sets from previous work on a Neotropical bat-plant dispersal system (bats in the genus Carollia and plants in the genus Piper). We used data from captive behavioral experiments, which show how amides in ripe fruits of Piper decrease the retention time of seeds and alter food choices. With new analyses, we show that these defensive secondary compounds also delay the time of fruit removal. Next, with a behaviorally annotated bat telemetry data set, we quantified post-feeding movements (i.e., seed dispersal distances). Using generalized additive mixed models we found that seed dispersal distances varied nonlinearly with gut retention times as well as with the time of fruit removal. By interrogating the model predictions, we identified two novel mechanisms by which fruit secondary compounds can impose costs in terms of decreased seed dispersal distances: (1) small-scale reductions in gut retention time and (2) causing fruits to forgo advantageous bat activity peaks that confer high seed dispersal distances.


Subject(s)
Chiroptera , Seed Dispersal , Animals , Feeding Behavior , Fruit , Herbivory , Seeds
7.
PLoS One ; 11(11): e0167027, 2016.
Article in English | MEDLINE | ID: mdl-27880791

ABSTRACT

Within the large order of bats, sexual size dimorphism measured by forearm length and body mass is often female-biased. Several studies have explained this through the effects on load carrying during pregnancy, intrasexual competition, as well as the fecundity and thermoregulation advantages of increased female body size. We hypothesized that wing shape should differ along with size and be under variable selection pressure in a species where there are large differences in flight behaviour. We tested whether load carrying, sex differential migration, or reproductive advantages of large females affect size and wing shape dimorphism in the common noctule (Nyctalus noctula), in which females are typically larger than males and only females migrate long distances each year. We tested for univariate and multivariate size and shape dimorphism using data sets derived from wing photos and biometric data collected during pre-migratory spring captures in Switzerland. Females had forearms that are on average 1% longer than males and are 1% heavier than males after emerging from hibernation, but we found no sex differences in other size, shape, or other functional characters in any wing parameters during this pre-migratory period. Female-biased size dimorphism without wing shape differences indicates that reproductive advantages of big mothers are most likely responsible for sexual dimorphism in this species, not load compensation or shape differences favouring aerodynamic efficiency during pregnancy or migration. Despite large behavioural and ecological sex differences, morphology associated with a specialized feeding niche may limit potential dimorphism in narrow-winged bats such as common noctules and the dramatic differences in migratory behaviour may then be accomplished through plasticity in wing kinematics.


Subject(s)
Body Size/physiology , Chiroptera , Flight, Animal/physiology , Sex Characteristics , Wings, Animal , Animal Migration/physiology , Animals , Chiroptera/anatomy & histology , Chiroptera/physiology , Female , Male , Pregnancy , Wings, Animal/anatomy & histology , Wings, Animal/physiology
8.
Oecologia ; 177(2): 453-66, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25262120

ABSTRACT

Plants often recruit frugivorous animals to transport their seeds; however, gut passage can have varying effects on plant fitness depending on the physical and chemical treatment of the seed, the distance seeds are transported, and the specific site of deposition. One way in which plants can mediate the effects of gut passage on fitness is by producing fruit secondary compounds that influence gut-retention time (GRT). Using frugivorous bats (Carollia perspicillata: Phyllostomidae) and Neotropical plants in the genus Piper, we compared GRT of seeds among five plant species (Piper colonense, Piper peltatum, Piper reticulatum, Piper sancti-felicis, and Piper silvivagum) and investigated the role of fruit amides (piperine, piplartine and whole fruit amide extracts from P. reticulatum) in mediating GRT. Our results showed interspecific differences in GRT; P. reticulatum seeds passed most slowly, while P. silvivagum and P. colonense seeds passed most rapidly. Piplartine and P. reticulatum amide extracts decreased GRT, while piperine had no effect. In addition, we examined the effects of GRT on seed germination success and speed in laboratory conditions. For germination success, the effects were species specific; germination success increased with GRT for P. peltatum but not for other species. GRT did not influence germination speed in any of the species examined. Plant secondary compounds have primarily been studied in the context of their defensive role against herbivores and pathogens, but may also play a key role in mediating seed dispersal interactions.


Subject(s)
Chiroptera/metabolism , Gastrointestinal Transit , Piper/chemistry , Seed Dispersal , Seeds/metabolism , Animals , Chiroptera/physiology , Fruit/chemistry , Fruit/metabolism , Germination , Herbivory , Piper/growth & development , Piper/metabolism , Seeds/chemistry , Seeds/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...