Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Science ; 376(6589): 199-203, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35389780

ABSTRACT

Despite quantum electrodynamics (QED) being one of the most stringently tested theories underpinning modern physics, recent precision atomic spectroscopy measurements have uncovered several small discrepancies between experiment and theory. One particularly powerful experimental observable that tests QED independently of traditional energy level measurements is the "tune-out" frequency, where the dynamic polarizability vanishes and the atom does not interact with applied laser light. In this work, we measure the tune-out frequency for the 23S1 state of helium between transitions to the 23P and 33P manifolds and compare it with new theoretical QED calculations. The experimentally determined value of 725,736,700(260) megahertz differs from theory [725,736,252(9) megahertz] by 1.7 times the measurement uncertainty and resolves both the QED contributions and retardation corrections.

2.
Phys Rev Lett ; 125(1): 013002, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32678641

ABSTRACT

We present the detection of the highly forbidden 2^{3}S_{1}→3^{3}S_{1} atomic transition in helium, the weakest transition observed in any neutral atom. Our measurements of the transition frequency, upper state lifetime, and transition strength agree well with published theoretical values and can lead to tests of both QED contributions and different QED frameworks. To measure such a weak transition, we develop two methods using ultracold metastable (2^{3}S_{1}) helium atoms: low background direct detection of excited then decayed atoms for sensitive measurement of the transition frequency and lifetime, and a pulsed atom laser heating measurement for determining the transition strength. These methods could possibly be applied to other atoms, providing new tools in the search for ultraweak transitions and precision metrology.

3.
Nature ; 540(7631): 100-103, 2016 11 30.
Article in English | MEDLINE | ID: mdl-27905444

ABSTRACT

Ghost imaging is a counter-intuitive phenomenon-first realized in quantum optics-that enables the image of a two-dimensional object (mask) to be reconstructed using the spatio-temporal properties of a beam of particles with which it never interacts. Typically, two beams of correlated photons are used: one passes through the mask to a single-pixel (bucket) detector while the spatial profile of the other is measured by a high-resolution (multi-pixel) detector. The second beam never interacts with the mask. Neither detector can reconstruct the mask independently, but temporal cross-correlation between the two beams can be used to recover a 'ghost' image. Here we report the realization of ghost imaging using massive particles instead of photons. In our experiment, the two beams are formed by correlated pairs of ultracold, metastable helium atoms, which originate from s-wave scattering of two colliding Bose-Einstein condensates. We use higher-order Kapitza-Dirac scattering to generate a large number of correlated atom pairs, enabling the creation of a clear ghost image with submillimetre resolution. Future extensions of our technique could lead to the realization of ghost interference, and enable tests of Einstein-Podolsky-Rosen entanglement and Bell's inequalities with atoms.

4.
Phys Rev Lett ; 115(4): 043004, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26252681

ABSTRACT

We present the first measurement for helium atoms of the tune-out wavelength at which the atomic polarizability vanishes. We utilize a novel, highly sensitive technique for precisely measuring the effect of variations in the trapping potential of confined metastable (2^{3}S_{1}) helium atoms illuminated by a perturbing laser light field. The measured tune-out wavelength of 413.0938(9_{stat})(20_{syst}) nm compares well with the value predicted by a theoretical calculation [413.02(9) nm] which is sensitive to finite nuclear mass, relativistic, and quantum electrodynamic effects. This provides motivation for more detailed theoretical investigations to test quantum electrodynamics.

5.
Nat Commun ; 2: 291, 2011.
Article in English | MEDLINE | ID: mdl-21505447

ABSTRACT

Speckle patterns produced by multiple independent light sources are a manifestation of the coherence of the light field. Second-order correlations exhibited in phenomena such as photon bunching, termed the Hanbury Brown-Twiss effect, are a measure of quantum coherence. Here we observe for the first time atomic speckle produced by atoms transmitted through an optical waveguide, and link this to second-order correlations of the atomic arrival times. We show that multimode matter-wave guiding, which is directly analogous to multimode light guiding in optical fibres, produces a speckled transverse intensity pattern and atom bunching, whereas single-mode guiding of atoms that are output-coupled from a Bose-Einstein condensate yields a smooth intensity profile and a second-order correlation value of unity. Both first- and second-order coherence are important for applications requiring a fully coherent atomic source, such as squeezed-atom interferometry.


Subject(s)
Interferometry/methods , Light , Models, Chemical , Optics and Photonics , Photons , Helium/chemistry , Lasers
6.
Science ; 331(6020): 1046-9, 2011 Feb 25.
Article in English | MEDLINE | ID: mdl-21350171

ABSTRACT

A major advance in understanding the behavior of light was to describe the coherence of a light source by using correlation functions that define the spatio-temporal relationship between pairs and larger groups of photons. Correlations are also a fundamental property of matter. We performed simultaneous measurement of the second- and third-order correlation functions for atoms. Atom bunching in the arrival time for pairs and triplets of thermal atoms just above the Bose-Einstein condensation (BEC) temperature was observed. At lower temperatures, we demonstrated conclusively the long-range coherence of the BEC for correlation functions to third order, which supports the prediction that like coherent light, a BEC possesses long-range coherence to all orders.

7.
Phys Rev Lett ; 103(5): 053002, 2009 Jul 31.
Article in English | MEDLINE | ID: mdl-19792494

ABSTRACT

Exited atoms may relax to the ground state by radiative decay, a process which is usually very fast (of order nanoseconds). However, quantum-mechanical selection rules can prevent such rapid decay, in which case these "metastable" states can have lifetimes of order seconds or longer. In this Letter, we determine experimentally the lifetime of the longest-lived neutral atomic state-the first excited state of helium (the 2(3)S1 metastable state)-to the highest accuracy yet measured. We use laser cooling and magnetic trapping to isolate a cloud of metastable helium (He*) atoms from their surrounding environment, and measure the decay rate to the ground 1(1)S0 state via extreme ultraviolet (XUV) photon emission. This is the first measurement using a virtually unperturbed ensemble of isolated helium atoms, and yields a value of 7870(510) seconds, in excellent agreement with the predictions of quantum electrodynamic theory.

8.
J Chem Phys ; 129(16): 164305, 2008 Oct 28.
Article in English | MEDLINE | ID: mdl-19045264

ABSTRACT

High-resolution laser-based one extreme-ultraviolet (EUV)+one UV two-photon ionization spectroscopy and EUV photoabsorption spectroscopy have been employed to study spin-forbidden (3)Pi(u)-X (1)Sigma(g) (+)(v,0) transitions in (14)N(2) and (15)N(2). Levels of the C (3)Pi(u) valence and 3ssigma(g)F(3) and 3ppi(u)G(3) (3)Pi(u) Rydberg states are characterized, either through their direct optical observation, or, indirectly, through their perturbative effects on the (1)Pi(u) and (1)Sigma(u) (+) states, which are accessible in dipole-allowed transitions. Optical observation of the G(3)-X(0,0) and (1,0) transitions is reported for the first time, together with evidence for six new vibrational levels of the C state. Following the recent observation of the F(3)-X(0,0) transition at rotational resolution [J. P. Sprengers et al., J. Chem. Phys. 123, 144315 (2005)], the F(3)(v=1) level is found to be responsible for a local perturbation in the rotational predissociation pattern of the b(') (1)Sigma(u) (+)(v=4) state. Despite their somewhat fragmentary nature, these new observations provide a valuable database on the (3)Pi(u) states of N(2) and their interactions which will help elucidate the predissociation mechanisms for the nitrogen molecule.

9.
J Chem Phys ; 129(20): 204303, 2008 Nov 28.
Article in English | MEDLINE | ID: mdl-19045860

ABSTRACT

The 3psigma(u)D (3)Sigma(u) (+) Rydberg state of N(2) is studied experimentally using two high-resolution spectroscopic techniques. First, the forbidden D (3)Sigma(u) (+)-X (1)Sigma(g) (+) transition is observed for the first time via the (0,0) band of (14)N(2) and the (1,0) band of (15)N(2), using 1 extreme-ultraviolet +1 ultraviolet two-photon-ionization laser spectroscopy. Second, the Rydberg-Rydberg transition D (3)Sigma(u) (+)-E (3)Sigma(g) (+) is studied using near-infrared diode-laser photoabsorption spectroscopy, thus extending the previous measurements of Kanamori et al. [J. Chem. Phys. 95, 80 (1991)], to higher transition energies, and thereby revealing the (2,2) and (3,3) bands. The combined results show that the D(v=0-3) levels exhibit rapidly increasing rotational predissociation as v increases, spanning nearly four orders of magnitude. The D-state level structure and rotational predissociation signature are explained by means of a coupled-channels model which considers the electrostatically coupled (3)Pi(u) Rydberg-valence manifold, together with a pure-precession L-uncoupling rotational interaction between the 3psigma(u)D (3)Sigma(u) (+) and 3ppi(u)G (3)Pi(u) Rydberg p-complex components.

10.
Phys Rev Lett ; 100(2): 023001, 2008 Jan 18.
Article in English | MEDLINE | ID: mdl-18232862

ABSTRACT

We present the first experimental determination of the 2(3)P(1)-1(1)S0 transition rate in helium and compare this measurement with theoretical quantum-electrodynamic predictions. The experiment exploits the very long (approximately 1 minute) confinement times obtained for atoms magneto-optically trapped in an apparatus used to create a Bose-Einstein condensate of metastable (2(3)S1) helium. The 2(3)P(1)-1(1)S0 transition rate is measured directly from the decay rate of the cold atomic cloud following 1083 nm laser excitation from the 2(3)S1 to the 2(3)P1 state, and from accurate knowledge of the 2(3)P1 population. The value obtained is 177+/-8 s(-1), which agrees very well with theoretical predictions, and has an accuracy that compares favorably with measurements for the same transition in heliumlike ions higher in the isoelectronic sequence.

11.
J Chem Phys ; 123(14): 144315, 2005 Oct 08.
Article in English | MEDLINE | ID: mdl-16238399

ABSTRACT

Using ultrahigh-resolution 1 XUV+1 UV two-photon ionization laser spectroscopy, the F (3)Pi(u)<--X (1)Sigma(g) (+)(0,0) transition of N(2) has been optically observed for the first time, and the 3s sigma(g)F (3)Pi(u)(upsilon=0) Rydberg level fully characterized with rotational resolution. The experimental spectroscopic parameters and predissociation level widths suggest strong interactions between the F state and the 3p pi(u)G (3)Pi(u) Rydberg and C(') (3)Pi(u) valence states, analogous to those well known in the case of the isoconfigurational (1)Pi(u) states.

12.
Phys Rev Lett ; 94(17): 173201, 2005 May 06.
Article in English | MEDLINE | ID: mdl-15904286

ABSTRACT

Absolute measurements of total scattering cross sections for low energy (5-70 eV) electrons by metastable helium (2(3)S) atoms are presented. The measurements are performed using a magneto-optical trap which is loaded from a laser-cooled, bright beam of slow He(2(3)S) atoms. The data are compared with predictions from convergent close coupling and R matrix with pseudostate calculations, and we find good agreement between experiment and theory.

13.
J Chem Phys ; 122(14): 144301, 2005 Apr 08.
Article in English | MEDLINE | ID: mdl-15847517

ABSTRACT

Lifetimes of several (1)Pi(u) states of the three natural isotopomers of molecular nitrogen, (14)N(2), (14)N(15)N, and (15)N(2), are determined via linewidth measurements in the frequency domain. Extreme ultraviolet (XUV)+UV two-photon ionization spectra of the b (1)Pi(u)(v=0-1,5-7) and c(3) (1)Pi(u)(v=0) states of (14)N(2), b (1)Pi(u)(v=0-1,5-6) and c(3) (1)Pi(u)(v=0) states of (14)N(15)N, and b (1)Pi(u)(v=0-7), c(3) (1)Pi(u)(v=0), and o (1)Pi(u)(v=0) states of (15)N(2) are recorded at ultrahigh resolution, using a narrow band tunable XUV-laser source. Lifetimes are derived from the linewidths of single rotationally resolved spectral lines after deconvolution of the instrument function. The observed lifetimes depend on the vibrational quantum number and are found to be strongly isotope dependent.

14.
Opt Lett ; 28(14): 1248-50, 2003 Jul 15.
Article in English | MEDLINE | ID: mdl-12885036

ABSTRACT

An injection-seeded optical parametric oscillator (OPO), based on periodically poled KTiOPO4 and pumped by a frequency-doubled, nanosecond-pulsed Nd:YAG laser, generates continuously tunable, single-longitudinal-mode, pulsed output at approximately 842 nm for high-resolution spectroscopy. Optical-heterodyne measurements show that the OPO frequency chirp increases linearly with detuning from the free-running (unseeded) OPO frequency and can be maintained as low as 10 MHz. Other factors affecting chirp are identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...