Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Neurotrauma ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818799

ABSTRACT

Neurostimulation protocols are increasingly used as therapeutic interventions, including for brain injury. In addition to the direct activation of neurons, these stimulation protocols are also likely to have downstream effects on those neurons' synaptic outputs. It is well known that alterations in the strength of synaptic connections (long-term potentiation, LTP; long-term depression, LTD) are sensitive to the frequency of stimulation used for induction, however little is known about the contribution of the temporal pattern of stimulation to the downstream synaptic plasticity that may be induced by neurostimulation in the injured brain. We explored interactions of the temporal pattern and frequency of neurostimulation in the normal cerebral cortex and after mild traumatic brain injury (mTBI), to inform therapies to strengthen or weaken neural circuits in injured brains, as well as to better understand the role of these factors in normal brain plasticity. Whole-cell (WC) patch-clamp recordings of evoked postsynaptic potentials (PSPs) in individual neurons, as well as field potential (FP) recordings, were made from layer 2/3 of visual cortex in response to stimulation of layer 4, in acute slices from control (naïve), sham operated, and mTBI rats. We compared synaptic plasticity induced by different stimulation protocols, each consisting of a specific frequency (1 Hz, 10 Hz, or 100 Hz), continuity (continuous or discontinuous), and temporal pattern (perfectly regular, slightly irregular, or highly irregular). At the individual neuron level, dramatic differences in plasticity outcome occurred when the highly irregular stimulation protocol was used at 1 Hz or 10 Hz, producing an overall LTD in controls and shams, but a robust overall LTP after mTBI. Consistent with the individual neuron results, the plasticity outcomes for simultaneous FP recordings were similar, indicative of our results generalizing to a larger scale synaptic network than can be sampled by individual WC recordings alone. In addition to the differences in plasticity outcome between control (naïve or sham) and injured brains, the dynamics of the changes in synaptic responses that developed during stimulation were predictive of the final plasticity outcome. Our results demonstrate that the temporal pattern of stimulation plays a role in the polarity and magnitude of synaptic plasticity induced in the cerebral cortex while highlighting differences between normal and injured brain responses. Moreover, these results may be useful for optimization of neurostimulation therapies to treat mTBI and other brain disorders, in addition to providing new insights into downstream plasticity signaling mechanisms in the normal brain.

2.
IUCrJ ; 11(Pt 2): 140-151, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38358351

ABSTRACT

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for the deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and the resulting consensus recommendations. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.


Subject(s)
Data Curation , Cryoelectron Microscopy/methods
3.
Nat Commun ; 15(1): 389, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195598

ABSTRACT

Structural biology efforts using cryogenic electron microscopy are frequently stifled by specimens adopting "preferred orientations" on grids, leading to anisotropic map resolution and impeding structure determination. Tilting the specimen stage during data collection is a generalizable solution but has historically led to substantial resolution attenuation. Here, we develop updated data collection and image processing workflows and demonstrate, using multiple specimens, that resolution attenuation is negligible or significantly reduced across tilt angles. Reconstructions with and without the stage tilted as high as 60° are virtually indistinguishable. These strategies allowed the reconstruction to 3 Å resolution of a bacterial RNA polymerase with preferred orientation, containing an unnatural nucleotide for studying novel base pair recognition. Furthermore, we present a quantitative framework that allows cryo-EM practitioners to define an optimal tilt angle during data acquisition. These results reinforce the utility of employing stage tilt for data collection and provide quantitative metrics to obtain isotropic maps.


Subject(s)
Benchmarking , Computer Systems , Cryoelectron Microscopy , Anisotropy , Data Collection
4.
ArXiv ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38076521

ABSTRACT

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and consensus recommendations resulting from the workshop. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.

6.
J Struct Biol X ; 7: 100089, 2023.
Article in English | MEDLINE | ID: mdl-37398937

ABSTRACT

Correlation functions play an important role in the theoretical underpinnings of many disparate areas of the physical sciences: in particular, scattering theory. More recently, they have become useful in the classification of objects in areas such as computer vision and our area of cryoEM. Our primary classification scheme in the cryoEM image processing system, EMAN2, is now based on third order invariants formulated in Fourier space. This allows a factor of 8 speed up in the two classification procedures inherent in our software pipeline, because it allows for classification without the need for computationally costly alignment procedures. In this work, we address several formal and practical aspects of such multispectral invariants. We show that we can formulate such invariants in the representation in which the original signal is most compact. We explicitly construct transformations between invariants in different orientations for arbitrary order of correlation functions and dimension. We demonstrate that third order invariants distinguish 2D mirrored patterns (unlike the radial power spectrum), which is a fundamental aspects of its classification efficacy. We show the limitations of 3rd order invariants also, by giving an example of a wide family of patterns with identical (vanishing) set of 3rd order invariants. For sufficiently rich patterns, the third order invariants should distinguish typical images, textures and patterns.

7.
bioRxiv ; 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37503021

ABSTRACT

Structural biology efforts using cryogenic electron microscopy are frequently stifled by specimens adopting "preferred orientations" on grids, leading to anisotropic map resolution and impeding structure determination. Tilting the specimen stage during data collection is a generalizable solution but has historically led to substantial resolution attenuation. Here, we develop updated data collection and image processing workflows and demonstrate, using multiple specimens, that resolution attenuation is negligible or significantly reduced across tilt angles. Reconstructions with and without the stage tilted as high as 60° are virtually indistinguishable. These strategies allowed the reconstruction to 3 Å resolution of a bacterial RNA polymerase with preferred orientation. Furthermore, we present a quantitative framework that allows cryo-EM practitioners to define an optimal tilt angle for dataset acquisition. These data reinforce the utility of employing stage tilt for data collection and provide quantitative metrics to obtain isotropic maps.

8.
Prog Biophys Mol Biol ; 160: 53-65, 2021 03.
Article in English | MEDLINE | ID: mdl-32645314

ABSTRACT

A complete understanding of how an orientation distribution contributes to a cryo-EM reconstruction remains lacking. It is necessary to begin critically assessing the set of views to gain an understanding of its effect on experimental reconstructions. Toward that end, we recently suggested that the type of orientation distribution may alter resolution measures in a systematic manner. We introduced the sampling compensation factor (SCF), which incorporates how the collection geometry might change the spectral signal-to-noise ratio (SSNR), irrespective of the other experimental aspects. We show here that knowledge of the sampling restricted to spherical surfaces of sufficiently large radii in Fourier space is equivalent to knowledge of the set of projection views. Moreover, the SCF geometrical factor may be calculated from one such surface. To aid cryo-EM practitioners, we developed a graphical user interface (GUI) tool that evaluates experimental orientation distributions. The GUI returns plots of projection directions, sampling constrained to the surface of a sphere, the SCF value, the fraction of the empty region of Fourier space, and a histogram of the sampling values over the points on a sphere. Finally, a fixed tilt angle may be incorporated to determine how tilting the grid during collection may improve the distribution of views and Fourier space sampling. We advocate this simple conception of sampling and the use of such tools as a complement to the distribution of views to capture the different aspects of the effect of projection directions on cryo-EM reconstructions.


Subject(s)
Cryoelectron Microscopy/methods , Algorithms , Databases, Factual , Fourier Analysis , Image Processing, Computer-Assisted/methods , Models, Molecular , Signal-To-Noise Ratio , Software
9.
Prog Biophys Mol Biol ; 150: 160-183, 2020 01.
Article in English | MEDLINE | ID: mdl-31525386

ABSTRACT

Virtually all single-particle cryo-EM experiments currently suffer from specimen adherence to the air-water interface, leading to a non-uniform distribution in the set of projection views. Whereas it is well accepted that uniform projection distributions can lead to high-resolution reconstructions, non-uniform (anisotropic) distributions can negatively affect map quality, elongate structural features, and in some cases, prohibit interpretation altogether. Although some consequences of non-uniform sampling have been described qualitatively, we know little about how sampling quantitatively affects resolution in cryo-EM. Here, we show how inhomogeneity in any projection distribution scheme attenuates the global Fourier Shell Correlation (FSC) in relation to the number of particles and a single geometrical parameter, which we term the sampling compensation factor (SCF). The reciprocal of the SCF is defined as the average over Fourier shells of the reciprocal of the per-particle sampling and normalized to unity for uniform distributions. The SCF therefore ranges from one to zero, with values close to the latter implying large regions of poorly sampled or completely missing data in Fourier space. Using two synthetic test cases, influenza hemagglutinin and human apoferritin, we demonstrate how any amount of sampling inhomogeneity always attenuates the FSC compared to a uniform distribution. We advocate quantitative evaluation of the SCF criterion to approximate the effect of non-uniform sampling on resolution within experimental single-particle cryo-EM reconstructions.


Subject(s)
Apoferritins/chemistry , Cryoelectron Microscopy/instrumentation , Cryoelectron Microscopy/methods , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Algorithms , Anisotropy , Computer Simulation , Humans , Imaging, Three-Dimensional , Models, Molecular , Molecular Imaging , Surface Properties , Water
10.
Curr Opin Microbiol ; 43: 1-8, 2018 06.
Article in English | MEDLINE | ID: mdl-29100109

ABSTRACT

The scope and complexity of cryogenic electron microscopy (cryoEM) data has greatly increased, and will continue to do so, due to recent and ongoing technical breakthroughs that have led to much improved resolutions for macromolecular structures solved using this method. This big data explosion includes single particle data as well as tomographic tilt series, both generally acquired as direct detector movies of ∼10-100 frames per image or per tilt-series. We provide a brief survey of the developments leading to the current status, and describe existing cryoEM pipelines, with an emphasis on the scope of data acquisition, methods for automation, and use of cloud storage and computing.


Subject(s)
Big Data , Cryoelectron Microscopy/methods , Automation, Laboratory/instrumentation , Cloud Computing , Cryoelectron Microscopy/statistics & numerical data
11.
Article in English | MEDLINE | ID: mdl-29034354

ABSTRACT

BACKGROUND: Prefrontal global brain connectivity with global signal regression (GBCr) was proposed as a robust biomarker of depression, and was associated with ketamine's mechanism of action. Here, we investigated prefrontal GBCr in treatment-resistant depression (TRD) at baseline and following treatment. Then, we conducted a set of pharmacological challenges in healthy subjects to investigate the glutamate neurotransmission correlates of GBCr. METHODS: In study A, we used functional magnetic resonance imaging (fMRI) to compare GBCr between 22 TRD and 29 healthy control. Then, we examined the effects of ketamine and midazolam on GBCr in TRD patients 24h post-treatment. In study B, we acquired repeated fMRI in 18 healthy subjects to determine the effects of lamotrigine (a glutamate release inhibitor), ketamine, and lamotrigine-by-ketamine interaction. RESULTS: In study A, TRD patients showed significant reduction in dorsomedial and dorsolateral prefrontal GBCr compared to healthy control. In TRD patients, GBCr in the altered clusters significantly increased 24h following ketamine (effect size = 1.0 [0.3 1.8]), but not midazolam (effect size = 0.5 [-0.6 1.3]). In study B, oral lamotrigine reduced GBCr 2h post-administration, while ketamine increased medial prefrontal GBCr during infusion. Lamotrigine significantly reduced the ketamine-induced GBCr surge. Exploratory analyses showed elevated ventral prefrontal GBCr in TRD and significant reduction of ventral prefrontal GBCr during ketamine infusion in healthy subjects. CONCLUSIONS: This study provides first replication of the ability of ketamine to normalize depression-related prefrontal dysconnectivity. It also provides indirect evidence that these effects may be triggered by the capacity of ketamine to enhance glutamate neurotransmission.

12.
BMC Genomics ; 18(1): 740, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28927378

ABSTRACT

BACKGROUND: Nearly 6 million deaths and over a half trillion dollars in healthcare costs worldwide are attributed to tobacco smoking each year. Extensive research efforts have been pursued to elucidate the molecular underpinnings of smoking addiction and facilitate cessation. In this study, we genotyped and obtained both resting state and task-based functional magnetic resonance imaging from 64 non-smokers and 42 smokers. Smokers were imaged after having smoked normally ("sated") and after having not smoked for at least 12 h ("abstinent"). RESULTS: While abstinent smokers did not differ from non-smokers with respect to pairwise resting state functional connectivities (RSFCs) between 12 brain regions of interest, RSFCs involving the caudate and putamen of sated smokers significantly differed from those of non-smokers (P < 0.01). Further analyses of caudate and putamen activity during elicited experiences of reward and disappointment show that caudate activity during reward (CR) correlated with smoking status (P = 0.015). Moreover, abstinent smokers with lower CR experienced greater withdrawal symptoms (P = 0.024), which suggests CR may be related to smoking urges. Associations between genetic variants and CR, adjusted for smoking status, were identified by genome-wide association study (GWAS). Genes containing or exhibiting caudate-specific expression regulation by these variants were enriched within Gene Ontology terms that describe cytoskeleton functions, synaptic organization, and injury response (P < 0.001, FDR < 0.05). CONCLUSIONS: By integrating genomic and imaging data, novel insights into potential mechanisms of caudate activation and homeostasis are revealed that may guide new directions of research toward improving our understanding of addiction pathology.


Subject(s)
Behavior, Addictive/diagnostic imaging , Caudate Nucleus/pathology , Genome-Wide Association Study , Homeostasis , Magnetic Resonance Imaging , Neuroglia/metabolism , Smoking/genetics , Adult , Behavior, Addictive/genetics , Behavior, Addictive/metabolism , Behavior, Addictive/pathology , Emotions , Female , Humans , Male , Reward , Signal Transduction , Smoking/metabolism , Smoking/psychology
13.
Am J Addict ; 26(7): 751-759, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28857330

ABSTRACT

BACKGROUND AND OBJECTIVES: Opioid use disorder (OUD) is a chronic disorder with relapse based on both desire for reinforcement (craving) and avoidance of withdrawal. The aversive aspect of dependence and relapse has been associated with a small brain structure called the habenula, which expresses large numbers of both opioid and nicotinic receptors. Additionally, opioid withdrawal symptoms can be induced in opioid-treated rodents by blocking not only opioid, but also nicotinic receptors. This receptor co-localization and cross-induction of withdrawal therefore might lead to genetic variation in the nicotinic receptor influencing development of human opioid dependence through its impact on the aversive components of opioid dependence. METHODS: We studied habenular resting state functional connectivity with related brain structures, specifically the striatum. We compared abstinent psychiatric patients who use opioids (N = 51) to psychiatric patients who do not (N = 254) to identify an endophenotype of opioid use that focused on withdrawal avoidance and aversion rather than the more commonly examined craving aspects of relapse. RESULTS: We found that habenula-striatal connectivity was stronger in opioid-using patients. Increased habenula-striatum connectivity was observed in opioid-using patients with the low risk rs16969968 GG genotype, but not in patients carrying the high risk AG or AA genotypes. CONCLUSIONS: We propose that increased habenula-striatum functional connectivity may be modulated by the nicotinic receptor variant rs16969968 and may lead to increased opioid use. SCIENTIFIC SIGNIFICANCE: Our data uncovered a promising brain target for development of novel anti-addiction therapies and may help the development of personalized therapies against opioid abuse. (Am J Addict 2017;26:751-759).


Subject(s)
Connectome/methods , Habenula , Nerve Tissue Proteins/genetics , Opioid-Related Disorders , Receptors, Nicotinic/genetics , Substance Withdrawal Syndrome , Adult , Avoidance Learning/physiology , Corpus Striatum , Female , Genetic Predisposition to Disease , Habenula/metabolism , Habenula/physiopathology , Humans , Magnetic Resonance Imaging/methods , Male , Opioid-Related Disorders/diagnosis , Opioid-Related Disorders/genetics , Opioid-Related Disorders/metabolism , Opioid-Related Disorders/psychology , Substance Withdrawal Syndrome/diagnosis , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/psychology
14.
Nat Methods ; 14(8): 793-796, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28671674

ABSTRACT

We present a strategy for tackling preferred specimen orientation in single-particle cryogenic electron microscopy by employing tilts during data collection. We also describe a tool to quantify the resulting directional resolution using 3D Fourier shell correlation volumes. We applied these methods to determine the structures at near-atomic resolution of the influenza hemagglutinin trimer, which adopts a highly preferred specimen orientation, and of ribosomal biogenesis intermediates, which adopt moderately preferred orientations.


Subject(s)
Cryoelectron Microscopy/methods , Hemagglutinin Glycoproteins, Influenza Virus/ultrastructure , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Molecular Imaging/methods , Specimen Handling/methods , Algorithms , Reproducibility of Results , Sensitivity and Specificity
15.
J Neuropsychiatry Clin Neurosci ; 29(3): 275-283, 2017.
Article in English | MEDLINE | ID: mdl-28238273

ABSTRACT

Serious mental illness (SMI) is disabling, and current interventions are ineffective for many. This exploratory study sought to demonstrate the feasibility of applying topological data analysis (TDA) to resting-state functional connectivity data obtained from a heterogeneous sample of 235 adult inpatients to identify a biomarker of treatment response. TDA identified two groups based on connectivity between the prefrontal cortex and striatal regions: patients admitted with greater functional connectivity between these regions evidenced less improvement from admission to discharge than patients with lesser connectivity between them. TDA identified a potential biomarker of an attenuated treatment response among inpatients with SMI. Insofar as the observed pattern of resting-state functional connectivity collected early during treatment is replicable, this potential biomarker may indicate the need to modify standard of care for a small, albeit meaningful, percentage of patients.


Subject(s)
Brain Mapping , Brain/diagnostic imaging , Magnetic Resonance Imaging , Mental Disorders/diagnostic imaging , Adult , Brain/physiopathology , Brain Mapping/methods , Disability Evaluation , Female , Humans , Magnetic Resonance Imaging/methods , Male , Mental Disorders/physiopathology , Mental Disorders/therapy , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Psychiatric Status Rating Scales , Rest , Self Report , Treatment Outcome
16.
Bull Menninger Clin ; 80(4): 348-356, 2016.
Article in English | MEDLINE | ID: mdl-27936900

ABSTRACT

Functional magnetic resonance imaging (fMRI) is widely used to study brain circuitry in healthy controls and in psychiatry. A major problem of fMRI studies is motion, which affects the quality of images, is a major source of noise, and can confound data if, for example, the experimental groups move differently. Despite continual reminders to experimental subjects about keeping still, however, movement in the scanner remains a problem. The authors hypothesized that showing head movement during a scanning session may help subjects learn how to keep their head still. The authors scanned subjects and displayed in real time a plot of head movement that had three regions. The authors found, in a limited sample, that the improvements were marginal and inconsistent. Thus, they concluded that this strategy, even if likely to work for some people, is probably not sufficiently successful to be implemented at this time.


Subject(s)
Feedback, Psychological , Head Movements , Magnetic Resonance Imaging/standards , Adult , Female , Humans , Magnetic Resonance Imaging/methods , Male
17.
Psychiatry Res Neuroimaging ; 256: 50-56, 2016 Oct 30.
Article in English | MEDLINE | ID: mdl-27685801

ABSTRACT

Suicide is a leading cause of death in America, with over 40,000 reported suicides per year. Mental illness is a major risk factor for suicidality. This study attempts to validate findings of volumetric differences from studies on suicidality. Psychiatric inpatients classified as having mildly severe or severe depression were separated into two groups: suicide attempted in the past two months (SA; n=20), non-suicidal control group (DA; n=20); these patients were all depressed and not significantly different for age, gender, race, marital status, education level, anxiety level, and substance abuse. Healthy controls (HC; n=20) were not significantly different from the suicidal groups for age and gender. Volunteers underwent MRI to assess volumes of cortical lobes, corpus callosum, and subcortical regions of interest, including the thalamus, insula, limbic structures, and basal ganglia. The right hippocampal volume of the SA group was significantly reduced compared to healthy controls. The frontal and temporal lobe volumes of the SA group were significantly decreased compared to the DA group. These volumetric reductions confirm previous findings and support the hypothesis that fronto-temporal function may be altered in suicidal patients.


Subject(s)
Depressive Disorder, Major/pathology , Hippocampus/pathology , Prefrontal Cortex/pathology , Suicidal Ideation , Suicide, Attempted/psychology , Temporal Lobe/pathology , Adolescent , Adult , Depressive Disorder, Major/diagnostic imaging , Female , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Organ Size , Prefrontal Cortex/diagnostic imaging , Risk Factors , Severity of Illness Index , Temporal Lobe/diagnostic imaging , Young Adult
18.
Complement Ther Med ; 27: 123-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27515886

ABSTRACT

Depression is a global health concern and when rooted in childhood adversity is particularly difficult to treat. In a previous study, we found that healing prayer was effective in reducing depressive symptoms. Subjects suffering with depression according to HAM-D scores underwent task-based brain functional MRI (fMRI) prior to and after a 6-week prayer intervention, and depression symptoms were assessed at both time points and at a 12-month follow-up. Average HAM-D scores decreased from 21.6±3.0 prior to the intervention to 4.0±2.7 immediately afterwards (14 subjects) and remained low (3.7±3.4) at 12-month follow-up (11 subjects). fMRI demonstrated increased activity in the medial prefrontal cortex during focus on the traumatic memory after the prayer intervention. Changes in activity in the left inferior frontal gyrus correlated with improvement in depressive symptoms. Activity in the precuneus region decreased after the prayer intervention when subjects focused on the negative feelings associated with the trauma. We conclude that increased activity in the prefrontal cortex after healing prayer may be associated with increased cognitive control over emotions. Healing prayer may help to dissociate the memory of the trauma from feelings associated with it, as evidenced by changes in the precuneus region.


Subject(s)
Depression/physiopathology , Depression/psychology , Faith Healing/psychology , Prefrontal Cortex/physiology , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/psychology , Emotions/physiology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Religion
19.
J Struct Biol ; 196(3): 289-298, 2016 12.
Article in English | MEDLINE | ID: mdl-27436409

ABSTRACT

As electron cryo-microscopy (cryo-EM) can now frequently achieve near atomic resolution, accurate interpretation of these density maps in terms of atomistic detail has become paramount in deciphering macromolecular structure and function. However, there are few software tools for modeling protein structure from cryo-EM density maps in this resolution range. Here, we present an extension of our original Pathwalking protocol, which can automatically trace a protein backbone directly from a near-atomic resolution (3-6Å) density map. The original Pathwalking approach utilized a Traveling Salesman Problem solver for backbone tracing, but manual adjustment was still required during modeling. In the new version, human intervention is minimized and we provide a more robust approach for backbone modeling. This includes iterative secondary structure identification, termini detection and the ability to model multiple subunits without prior segmentation. Overall, the new Pathwalking procedure provides a more complete and robust tool for annotating protein structure function in near-atomic resolution density maps.


Subject(s)
Cryoelectron Microscopy/methods , Proteins/ultrastructure , Software , Algorithms , Models, Molecular , Protein Conformation , Protein Structure, Secondary
20.
Front Psychiatry ; 7: 126, 2016.
Article in English | MEDLINE | ID: mdl-27468271

ABSTRACT

Little is known about the specific neural mechanisms through which cognitive factors influence craving and associated brain responses, despite the initial success of cognitive therapies in treating drug addiction. In this study, we investigated how cognitive factors such as beliefs influence subjective craving and neural activities in nicotine-addicted individuals using model-based functional magnetic resonance imaging (fMRI) and neuropharmacology. Deprived smokers (N = 24) participated in a two-by-two balanced placebo design, which crossed beliefs about nicotine (told "nicotine" vs. told "no nicotine") with the nicotine content in a cigarette (nicotine vs. placebo) which participants smoked immediately before performing a fMRI task involving reward learning. Subjects' reported craving was measured both before smoking and after the fMRI session. We found that first, in the presence of nicotine, smokers demonstrated significantly reduced craving after smoking when told "nicotine in cigarette" but showed no change in craving when told "no nicotine." Second, neural activity in the insular cortex related to craving was only significant when smokers were told "nicotine" but not when told "no nicotine." Both effects were absent in the placebo condition. Third, insula activation related to computational learning signals was modulated by belief about nicotine regardless of nicotine's presence. These results suggest that belief about nicotine has a strong impact on subjective craving and insula responses related to both craving and learning in deprived smokers, providing insights into the complex nature of belief-drug interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...