Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38562703

ABSTRACT

Mycobacterium bovis BCG is the vaccine against tuberculosis and an immunotherapy for bladder cancer. When administered intravenously, BCG reprograms bone marrow hematopoietic stem and progenitor cells (HSPCs), leading to heterologous protection against infections. Whether HSPC-reprogramming contributes to the anti-tumor effects of BCG administered into the bladder is unknown. We demonstrate that BCG administered in the bladder in both mice and humans reprograms HSPCs to amplify myelopoiesis and functionally enhance myeloid cell antigen presentation pathways. Reconstitution of naive mice with HSPCs from bladder BCG-treated mice enhances anti-tumor immunity and tumor control, increases intratumor dendritic cell infiltration, reprograms pro-tumorigenic neutrophils, and synergizes with checkpoint blockade. We conclude that bladder BCG acts systemically, reprogramming HSPC-encoded innate immunity, highlighting the broad potential of modulating HSPC phenotypes to improve tumor immunity.

2.
bioRxiv ; 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38405750

ABSTRACT

Macrophages adopt distinct phenotypes in response to environmental cues, with type-2 cytokine interleukin-4 promoting a tissue-repair homeostatic state (M2IL4). Glucocorticoids, widely used anti-inflammatory therapeutics, reportedly impart a similar phenotype (M2GC), but how such disparate pathways may functionally converge is unknown. We show using integrative functional genomics that M2IL4 and M2GC transcriptomes share a striking overlap mirrored by a shift in chromatin landscape in both common and signal-specific gene subsets. This core homeostatic program is enacted by transcriptional effectors KLF4 and the GC receptor, whose genome-wide occupancy and actions are integrated in a stimulus-specific manner by the nuclear receptor cofactor GRIP1. Indeed, many of the M2IL4:M2GC-shared transcriptomic changes were GRIP1-dependent. Consistently, GRIP1 loss attenuated phagocytic activity of both populations in vitro and macrophage tissue-repair properties in the murine colitis model in vivo. These findings provide a mechanistic framework for homeostatic macrophage programming by distinct signals, to better inform anti-inflammatory drug design.

3.
mBio ; 14(4): e0111623, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37530525

ABSTRACT

Combination antiretroviral therapy (cART) suppresses viral replication but does not cure HIV infection because a reservoir of infectious (intact) HIV proviruses persists in long-lived CD4+T cells. However, a large majority (>95%) of HIV-infected cells that persist on effective cART carry defective (non-infectious) proviruses. Defective proviruses consisting of only a single LTR (solo long terminal repeat) are commonly found as endogenous retroviruses in many animal species, but the frequency of solo-LTR HIV proviruses has not been well defined. Here we show that, in five pediatric donors whose viremia was suppressed on cART for at least 5 years, the proviruses in the nine largest clones of HIV-infected cells were solo LTRs. The sizes of five of these clones were assayed longitudinally by integration site-specific quantitative PCR. Minor waxing and waning of the clones was observed, suggesting that these clones are generally stable over time. Our findings show that solo LTRs comprise a large fraction of the proviruses in infected cell clones that persist in children on long-term cART. IMPORTANCE This work highlights that severely deleted HIV-1 proviruses comprise a significant proportion of the proviral landscape and are often overlooked.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Animals , HIV Infections/drug therapy , HIV-1/genetics , Antiretroviral Therapy, Highly Active , Proviruses/genetics , CD4-Positive T-Lymphocytes , Clone Cells , HIV Long Terminal Repeat
4.
Cell ; 186(18): 3882-3902.e24, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37597510

ABSTRACT

Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.


Subject(s)
COVID-19 , Epigenetic Memory , Post-Acute COVID-19 Syndrome , Animals , Humans , Mice , Cell Differentiation , COVID-19/immunology , Disease Models, Animal , Hematopoietic Stem Cells , Inflammation/genetics , Trained Immunity , Monocytes/immunology , Post-Acute COVID-19 Syndrome/genetics , Post-Acute COVID-19 Syndrome/immunology , Post-Acute COVID-19 Syndrome/pathology
5.
Sci Rep ; 13(1): 10958, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37414788

ABSTRACT

The advent of combined antiretroviral therapy (cART) has been instrumental in controlling HIV-1 replication and transmission and decreasing associated morbidity and mortality. However, cART alone is not able to cure HIV-1 due to the presence of long-lived, latently infected immune cells, which re-seed plasma viremia when cART is interrupted. Assessment of HIV-cure strategies using ex vivo culture methods for further understanding of the diversity of reactivated HIV, viral outgrowth, and replication dynamics are enhanced using ultrasensitive digital ELISA based on single-molecule array (Simoa) technology to increase the sensitivity of endpoint detection. In viral outgrowth assays (VOA), exponential HIV-1 outgrowth has been shown to be dependent upon initial virus burst size surpassing a critical growth threshold of 5100 HIV-1 RNA copies. Here, we show an association between ultrasensitive HIV-1 Gag p24 concentrations and HIV-1 RNA copy number that characterize viral dynamics below the exponential replication threshold. Single-genome sequencing (SGS) revealed the presence of multiple identical HIV-1 sequences, indicative of low-level replication occurring below the threshold of exponential outgrowth early during a VOA. However, SGS further revealed diverse related HIV variants detectable by ultrasensitive methods that failed to establish exponential outgrowth. Overall, our data suggest that viral outgrowth occurring below the threshold necessary for establishing exponential growth in culture does not preclude replication competence of reactivated HIV, and ultrasensitive detection of HIV-1 p24 may provide a method to detect previously unquantifiable variants. These data strongly support the use of the Simoa platform in a multi-prong approach to measuring latent viral burden and efficacy of therapeutic interventions aimed at an HIV-1 cure.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , Kinetics , Enzyme-Linked Immunosorbent Assay , HIV Core Protein p24 , RNA , Viral Load , CD4-Positive T-Lymphocytes , Virus Latency
6.
Retrovirology ; 18(1): 16, 2021 06 27.
Article in English | MEDLINE | ID: mdl-34176496

ABSTRACT

The characterisation of the HIV-1 reservoir, which consists of replication-competent integrated proviruses that persist on antiretroviral therapy (ART), is made difficult by the rarity of intact proviruses relative to those that are defective. While the only conclusive test for the replication-competence of HIV-1 proviruses is carried out in cell culture, genetic characterization of genomes by near full-length (NFL) PCR and sequencing can be used to determine whether particular proviruses have insertions, deletions, or substitutions that render them defective. Proviruses that are not excluded by having such defects can be classified as genetically intact and, possibly, replication competent. Identifying and quantifying proviruses that are potentially replication-competent is important for the development of strategies towards a functional cure. However, to date, there are no programs that can be incorporated into deep-sequencing pipelines for the automated characterization and annotation of HIV genomes. Existing programs that perform this work require manual intervention, cannot be widely installed, and do not have easily adjustable settings. Here, we present HIVIntact, a python-based software tool that characterises genomic defects in NFL HIV-1 sequences, allowing putative intact genomes to be identified in-silico. Unlike other applications that assess the genetic intactness of HIV genomes, this tool can be incorporated into existing sequence-analysis pipelines and applied to large next-generation sequencing datasets.


Subject(s)
DNA, Viral/genetics , Genome, Viral , HIV-1/genetics , Software/standards , Humans , Proviruses/genetics , Virus Integration , Virus Latency
7.
Viruses ; 13(5)2021 04 29.
Article in English | MEDLINE | ID: mdl-33946976

ABSTRACT

The latent HIV-1 reservoir is comprised of stably integrated and intact proviruses with limited to no viral transcription. It has been proposed that latent infection may be maintained by methylation of pro-viral DNA. Here, for the first time, we investigate the cytosine methylation of a replication competent provirus (AMBI-1) found in a T cell clone in a donor on antiretroviral therapy (ART). Methylation profiles of the AMBI-1 provirus were compared to other proviruses in the same donor and in samples from three other individuals on ART, including proviruses isolated from lymph node mononuclear cells (LNMCs) and peripheral blood mononuclear cells (PBMCs). We also evaluated the apparent methylation of cytosines outside of CpG (i.e., CpH) motifs. We found no evidence for methylation in AMBI-1 or any other provirus tested within the 5' LTR promoter. In contrast, CpG methylation was observed in the env-tat-rev overlapping reading frame. In addition, we found evidence for differential provirus methylation in cells isolated from LNMCs vs. PBMCs in some individuals, possibly from the expansion of infected cell clones. Finally, we determined that apparent low-level methylation of CpH cytosines is consistent with occasional bisulfite reaction failures. In conclusion, our data do not support the proposition that latent HIV infection is associated with methylation of the HIV 5' LTR promoter.


Subject(s)
CpG Islands , DNA Methylation , DNA, Viral , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , Proviruses/genetics , Antiretroviral Therapy, Highly Active , Gene Expression Regulation, Viral , Genome, Viral , Genomics/methods , HIV Infections/drug therapy , HIV Long Terminal Repeat/genetics , Humans , Virus Latency/genetics
8.
PLoS Pathog ; 17(4): e1009141, 2021 04.
Article in English | MEDLINE | ID: mdl-33826675

ABSTRACT

HIV persists during antiretroviral therapy (ART) as integrated proviruses in cells descended from a small fraction of the CD4+ T cells infected prior to the initiation of ART. To better understand what controls HIV persistence and the distribution of integration sites (IS), we compared about 15,000 and 54,000 IS from individuals pre-ART and on ART, respectively, with approximately 395,000 IS from PBMC infected in vitro. The distribution of IS in vivo is quite similar to the distribution in PBMC, but modified by selection against proviruses in expressed genes, by selection for proviruses integrated into one of 7 specific genes, and by clonal expansion. Clones in which a provirus integrated in an oncogene contributed to cell survival comprised only a small fraction of the clones persisting in on ART. Mechanisms that do not involve the provirus, or its location in the host genome, are more important in determining which clones expand and persist.


Subject(s)
Anti-Retroviral Agents/therapeutic use , HIV Infections/virology , Leukocytes, Mononuclear/virology , Oncogenes/genetics , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , DNA, Viral/genetics , Humans , Oncogenes/immunology , Proviruses/genetics , Virus Replication/genetics
9.
mBio ; 12(2)2021 04 08.
Article in English | MEDLINE | ID: mdl-33832973

ABSTRACT

Little is known about the emergence and persistence of human immunodeficiency virus (HIV)-infected T-cell clones in perinatally infected children. We analyzed peripheral blood mononuclear cells (PBMCs) for clonal expansion in 11 children who initiated antiretroviral therapy (ART) between 1.8 and 17.4 months of age and with viremia suppressed for 6 to 9 years. We obtained 8,662 HIV type 1 (HIV-1) integration sites from pre-ART samples and 1,861 sites from on-ART samples. Expanded clones of infected cells were detected pre-ART in 10/11 children. In 8 children, infected cell clones detected pre-ART persisted for 6 to 9 years on ART. A comparison of integration sites in the samples obtained on ART with healthy donor PBMCs infected ex vivo showed selection for cells with proviruses integrated in BACH2 and STAT5B Our analyses indicate that, despite marked differences in T-cell composition and dynamics between children and adults, HIV-infected cell clones are established early in children, persist for up to 9 years on ART, and can be driven by proviral integration in proto-oncogenes.IMPORTANCE HIV-1 integrates its genome into the DNA of host cells. Consequently, HIV-1 genomes are copied with the host cell DNA during cellular division. Pediatric immune systems differ significantly from adults, consisting primarily of naive T cells, which have low expression of the HIV-1 coreceptor CCR5. This difference may result in variances in the number or size of infected cell clones that persist in children on ART. Here, we provide the most extensive analysis of the integration landscape of HIV-1 in children. We found that, despite the largely naive cell populations in neonatal immune systems, patterns of HIV-1 integration and the size of infected cell clones are as large and widespread as those in adults. Furthermore, selection for integration events in proto-oncogenes were observed in children despite early ART. If such cell clones persist for the life span of these individuals, there may be long-term consequences that have yet to be realized.


Subject(s)
HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , T-Lymphocytes/virology , Virus Integration , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/virology , Child , Clinical Trials, Phase III as Topic , DNA, Viral/genetics , Female , HIV Infections/drug therapy , HIV-1/pathogenicity , Humans , Male , Proviruses/genetics , Randomized Controlled Trials as Topic , T-Lymphocytes/classification , T-Lymphocytes/immunology , Time Factors , Viral Load , Viremia , Virus Replication
10.
J Clin Invest ; 130(11): 5847-5857, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33016926

ABSTRACT

BACKGROUNDHIV-1 viremia that is not suppressed by combination antiretroviral therapy (ART) is generally attributed to incomplete medication adherence and/or drug resistance. We evaluated individuals referred by clinicians for nonsuppressible viremia (plasma HIV-1 RNA above 40 copies/mL) despite reported adherence to ART and the absence of drug resistance to the current ART regimen.METHODSSamples were collected from at least 2 time points from 8 donors who had nonsuppressible viremia for more than 6 months. Single templates of HIV-1 RNA obtained from plasma and viral outgrowth of cultured cells and from proviral DNA were amplified by PCR and sequenced for evidence of clones of cells that produced infectious viruses. Clones were confirmed by host-proviral integration site analysis.RESULTSHIV-1 genomic RNA with identical sequences were identified in plasma samples from all 8 donors. The identical viral RNA sequences did not change over time and did not evolve resistance to the ART regimen. In 4 of the donors, viral RNA sequences obtained from plasma matched those sequences from viral outgrowth cultures, indicating that the viruses were replication competent. Integration sites for infectious proviruses from those 4 donors were mapped to the introns of the MATR3, ZNF268, ZNF721/ABCA11P, and ABCA11P genes. The sizes of the clones were estimated to be from 50 million to 350 million cells.CONCLUSIONThese findings show that clones of HIV-1-infected cells producing virus can cause failure of ART to suppress viremia. The mechanisms involved in clonal expansion and persistence need to be defined to effectively target viremia and the HIV-1 reservoir.FUNDINGNational Cancer Institute, NIH; Howard Hughes Medical Research Fellows Program, Howard Hughes Medical Institute; Bill and Melinda Gates Foundation; Office of AIDS Research; American Cancer Society; National Cancer Institute through a Leidos subcontract; National Institute for Allergy and Infectious Diseases, NIH, to the I4C Martin Delaney Collaboratory; University of Rochester Center for AIDS Research and University of Rochester HIV/AIDS Clinical Trials Unit.


Subject(s)
HIV Infections , HIV-1/immunology , RNA, Viral/immunology , T-Lymphocytes , Viremia , Virus Integration , Anti-Retroviral Agents , Female , HIV Infections/genetics , HIV Infections/immunology , HIV-1/genetics , Humans , Introns/immunology , Male , RNA, Viral/genetics , T-Lymphocytes/immunology , T-Lymphocytes/virology , Viremia/genetics , Viremia/immunology
11.
BMC Genomics ; 21(1): 517, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32727364

ABSTRACT

An amendment to this paper has been published and can be accessed via the original article.

12.
AIDS Res Hum Retroviruses ; 36(11): 942-947, 2020 11.
Article in English | MEDLINE | ID: mdl-32683881

ABSTRACT

The prevalence of HIV-1 drug resistance is increasing worldwide and monitoring its emergence is important for the successful management of populations receiving combination antiretroviral therapy. It is likely that pre-existing drug resistance mutations linked on the same viral genomes are predictive of treatment failure. Because of the large number of sequences generated by ultrasensitive single-genome sequencing (uSGS) and other similar next-generation sequencing methods, it is difficult to assess each sequence individually for linked drug resistance mutations. Several software/programs exist to report the frequencies of individual mutations in large data sets, but they provide no information on linkage of resistance mutations. In this study, we report the HIV-DRLink program, a research tool that provides resistance mutation frequencies as well as their genetic linkage by parsing and summarizing the Sierra output from the Stanford HIV Database. The HIV-DRLink program should only be used on data sets generated by methods that eliminate artifacts due to polymerase chain reaction recombination, for example, standard single-genome sequencing or uSGS. HIV-DRLink is exclusively a research tool and is not intended to inform clinical decisions.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Anti-HIV Agents/therapeutic use , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV-1/genetics , Humans , Mutation
13.
BMC Genomics ; 21(1): 216, 2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32151239

ABSTRACT

BACKGROUND: All retroviruses, including human immunodeficiency virus (HIV), must integrate a DNA copy of their genomes into the genome of the infected host cell to replicate. Although integrated retroviral DNA, known as a provirus, can be found at many sites in the host genome, integration is not random. The adaption of linker-mediated PCR (LM-PCR) protocols for high-throughput integration site mapping, using randomly-sheared genomic DNA and Illumina paired-end sequencing, has dramatically increased the number of mapped integration sites. Analysis of samples from human donors has shown that there is clonal expansion of HIV infected cells and that clonal expansion makes an important contribution to HIV persistence. However, analysis of HIV integration sites in samples taken from patients requires extensive PCR amplification and high-throughput sequencing, which makes the methodology prone to certain specific artifacts. RESULTS: To address the problems with artifacts, we use a comprehensive approach involving experimental procedures linked to a bioinformatics analysis pipeline. Using this combined approach, we are able to reduce the number of PCR/sequencing artifacts that arise and identify the ones that remain. Our streamlined workflow combines random cleavage of the DNA in the samples, end repair, and linker ligation in a single step. We provide guidance on primer and linker design that reduces some of the common artifacts. We also discuss how to identify and remove some of the common artifacts, including the products of PCR mispriming and PCR recombination, that have appeared in some published studies. Our improved bioinformatics pipeline rapidly parses the sequencing data and identifies bona fide integration sites in clonally expanded cells, producing an Excel-formatted report that can be used for additional data processing. CONCLUSIONS: We provide a detailed protocol that reduces the prevalence of artifacts that arise in the analysis of retroviral integration site data generated from in vivo samples and a bioinformatics pipeline that is able to remove the artifacts that remain.


Subject(s)
HIV Infections/genetics , HIV/physiology , Virus Integration , Chromosome Mapping , Computational Biology , DNA, Viral , Genome, Human , Humans , Polymerase Chain Reaction , Proviruses/physiology , Sequence Analysis, DNA
14.
J Virol ; 94(4)2020 01 31.
Article in English | MEDLINE | ID: mdl-31776265

ABSTRACT

In adults starting antiretroviral therapy (ART) during acute infection, 2% of proviruses that persist on ART are genetically intact by sequence analysis. In contrast, a recent report in children treated early failed to detect sequence-intact proviruses. In another cohort of children treated early, we sought to detect and characterize proviral sequences after 6 to 9 years on suppressive ART. Peripheral blood mononuclear cells (PBMC) from perinatally infected children from the Children with HIV Early antiRetroviral (CHER) study were analyzed. Nearly full-length proviral amplification and sequencing (NFL-PAS) were performed at one time point after 6 to 9 years on ART. Amplicons with large internal deletions were excluded (<9 kb). All amplicons of ≥9 kb were sequenced and analyzed through a bioinformatic pipeline to detect indels, frameshifts, or hypermutations that would render them defective. In eight children who started ART at a median age of 5.4 months (range, 2.0 to 11.1 months), 733 single NFL-PAS amplicons were generated. Of these, 534 (72.9%) had large internal deletions, 174 (23.7%) had hypermutations, 15 (1.4%) had small internal deletions, 3 (1.0%) had deletions in the packaging signal/major splice donor site, and 7 (1.0%) were sequence intact. These 7 intact sequences were from three children who initiated ART after 2.3 months of age, one of whom had two identical intact sequences, suggestive of a cell clone harboring a replication-competent provirus. No intact proviruses were detected in four children who initiated ART before 2.3 months of age. Rare, intact proviruses can be detected in children who initiate ART after 2.3 months of age and are probably, as in adults, maintained by clonal expansion of cells infected before ART initiation.IMPORTANCE There are limited data about the proviral landscape in children exhibiting long-term suppression after early treatment, particularly in Sub-Saharan Africa where HIV-1 subtype C predominates. Investigating the sequence-intact reservoir could provide insight on the mechanisms by which intact proviruses persist and inform ongoing cure efforts. Through nearly full-length proviral amplification and sequencing (NFL-PAS), we generated 733 NFL-PAS amplicons from eight children. We showed that rare, genetically intact proviruses could be detected in children who initiated ART after 2.3 months of age. The frequency of intact proviruses was lower (P < 0.05) than that reported for HIV subtype B-infected adults treated during early HIV infection. We show that cells harboring genetically intact HIV proviruses are rare in children exhibiting long-term suppression after early treatment and may require the processing of a large number of cells to assess reservoir size. This points to the need for efficient methods to accurately quantify latent reservoirs, particularly in pediatric studies where sample availability is limited.


Subject(s)
HIV Infections/genetics , HIV-1/genetics , Proviruses/genetics , Anti-Retroviral Agents/therapeutic use , Antiretroviral Therapy, Highly Active/methods , CD4-Positive T-Lymphocytes/virology , Child , Cohort Studies , DNA, Viral/blood , Female , HIV Infections/virology , HIV-1/pathogenicity , Humans , Leukocytes, Mononuclear/virology , Male , Sequence Analysis, DNA/methods , South Africa , Viral Load/genetics , Viral Load/methods
15.
Proc Natl Acad Sci U S A ; 116(51): 25891-25899, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31776247

ABSTRACT

Understanding HIV-1 persistence despite antiretroviral therapy (ART) is of paramount importance. Both single-genome sequencing (SGS) and integration site analysis (ISA) provide useful information regarding the structure of persistent HIV DNA populations; however, until recently, there was no way to link integration sites to their cognate proviral sequences. Here, we used multiple-displacement amplification (MDA) of cellular DNA diluted to a proviral endpoint to obtain full-length proviral sequences and their corresponding sites of integration. We applied this method to lymph node and peripheral blood mononuclear cells from 5 ART-treated donors to determine whether groups of identical subgenomic sequences in the 2 compartments are the result of clonal expansion of infected cells or a viral genetic bottleneck. We found that identical proviral sequences can result from both cellular expansion and viral genetic bottlenecks occurring prior to ART initiation and following ART failure. We identified an expanded T cell clone carrying an intact provirus that matched a variant previously detected by viral outgrowth assays and expanded clones with wild-type and drug-resistant defective proviruses. We also found 2 clones from 1 donor that carried identical proviruses except for nonoverlapping deletions, from which we could infer the sequence of the intact parental virus. Thus, MDA-SGS can be used for "viral reconstruction" to better understand intrapatient HIV-1 evolution and to determine the clonality and structure of proviruses within expanded clones, including those with drug-resistant mutations. Importantly, we demonstrate that identical sequences observed by standard SGS are not always sufficient to establish proviral clonality.


Subject(s)
HIV-1/genetics , Virus Integration/genetics , Virus Replication/genetics , Anti-Retroviral Agents/therapeutic use , Base Sequence , Cell Line , DNA, Viral/genetics , Drug Resistance, Viral , HIV Infections/virology , Humans , Leukocytes, Mononuclear/virology , Lymph Nodes/virology , Mutation , Proviruses/genetics , Virus Integration/physiology
16.
Front Microbiol ; 10: 2204, 2019.
Article in English | MEDLINE | ID: mdl-31632364

ABSTRACT

BACKGROUND: HIV-1 proviruses can persist during ART in clonally-expanded populations of CD4+ T cells. To date, few examples of an expanded clones containing replication-competent proviruses exist, although it is suspected to be common. One such clone, denoted AMBI-1 (Maldarelli et al., 2014), was also a source of persistent viremia on ART, begging the question of how the AMBI-1 clone can survive despite infection with a replication-competent, actively-expressing provirus. We hypothesized that only a small fraction of cells within the AMBI-1 clone are activated to produce virus particles during cell division while the majority remain latent despite division, ensuring their survival. To address this question, we determined the fraction of HIV-1 proviruses within the AMBI-1 clone that expresses unspliced cell-associated RNA during ART and compared this fraction to 33 other infected T cell clones within the same individual. RESULTS: In total, 34 different clones carrying either intact or defective proviruses in "Patient 1" from Maldarelli et al. (2014) were assessed. We found that 2.3% of cells within the AMBI-1 clone contained unspliced HIV-1 RNA. Highest levels of HIV-1 RNA were found in the effector memory (EM) T cell subset. The fraction of cells within clones that contained HIV-1 RNA was not different in clones with intact (median 2.3%) versus defective (median 3.5%) proviruses (p = 0.2). However, higher fractions and levels of RNA were found in cells with proviruses containing multiple drug resistance mutations, including those contributing to rebound viremia. CONCLUSION: These findings show that the vast majority of HIV-1 proviruses within expanded T cell clones, including intact proviruses, may be transcriptionally silent at any given time, implying that infected T cells may be able to be activated to proliferate without inducing the expression of the integrated provirus or, alternatelively, may be able to proliferate without cellular activation. The results of this study suggest that the long, presumed correlation between the level of cellular and proviral activation may not be accurate and, therefore, requires further investigation.

17.
PLoS Pathog ; 15(10): e1008074, 2019 10.
Article in English | MEDLINE | ID: mdl-31609991

ABSTRACT

Studies have demonstrated that intensive ART alone is not capable of eradicating HIV-1, as the virus rebounds within a few weeks upon treatment interruption. Viral rebound may be induced from several cellular subsets; however, the majority of proviral DNA has been found in antigen experienced resting CD4+ T cells. To achieve a cure for HIV-1, eradication strategies depend upon both understanding mechanisms that drive HIV-1 persistence as well as sensitive assays to measure the frequency of infected cells after therapeutic interventions. Assays such as the quantitative viral outgrowth assay (QVOA) measure HIV-1 persistence during ART by ex vivo activation of resting CD4+ T cells to induce latency reversal; however, recent studies have shown that only a fraction of replication-competent viruses are inducible by primary mitogen stimulation. Previous studies have shown a correlation between the acquisition of effector memory phenotype and HIV-1 latency reversal in quiescent CD4+ T cell subsets that harbor the reservoir. Here, we apply our mechanistic understanding that differentiation into effector memory CD4+ T cells more effectively promotes HIV-1 latency reversal to significantly improve proviral measurements in the QVOA, termed differentiation QVOA (dQVOA), which reveals a significantly higher frequency of the inducible HIV-1 replication-competent reservoir in resting CD4+ T cells.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV-1/immunology , HIV-1/physiology , Immunologic Memory/immunology , Virus Latency/immunology , Aged , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , Cell Proliferation , Cells, Cultured , HIV Infections/immunology , HIV-1/growth & development , Humans , Male , Middle Aged , Proviruses/growth & development , Viral Load/drug effects , Virus Latency/drug effects , Virus Replication/drug effects
18.
JCI Insight ; 4(19)2019 10 03.
Article in English | MEDLINE | ID: mdl-31487271

ABSTRACT

We hypothesized that HIV-1 with dual-class but not single-class drug resistance mutations linked on the same viral genome, present in the virus population before initiation of antiretroviral therapy (ART), would be associated with failure of ART to suppress viremia. To test this hypothesis, we utilized an ultrasensitive single-genome sequencing assay that detects rare HIV-1 variants with linked drug resistance mutations (DRMs). A case (ART failure) control (nonfailure) study was designed to assess whether linkage of DRMs in pre-ART plasma samples was associated with treatment outcome in the nevirapine/tenofovir/emtricitabine arm of the AIDS Clinical Trials Group A5208/Optimal Combined Therapy After Nevirapine Exposure (OCTANE) Trial 1 among women who had received prior single-dose nevirapine. Ultrasensitive single-genome sequencing revealed a significant association between pre-ART HIV variants with DRMs to 2 drug classes linked on the same genome (dual class) and failure of combination ART with 3 drugs to suppress viremia. In contrast, linked, single-class DRMs were not associated with ART failure. We conclude that linked dual-class DRMs present before the initiation of ART are associated with ART failure, whereas linked single-class DRMs are not.


Subject(s)
Anti-HIV Agents/administration & dosage , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV-1/drug effects , HIV-1/genetics , Mutation , Treatment Failure , Anti-HIV Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Emtricitabine/administration & dosage , Emtricitabine/therapeutic use , Female , Genome, Viral , Humans , Nevirapine/administration & dosage , Nevirapine/therapeutic use , Tenofovir/administration & dosage , Tenofovir/therapeutic use , Whole Genome Sequencing
19.
J Clin Invest ; 129(11): 4629-4642, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31361603

ABSTRACT

To investigate the possibility that HIV-1 replication in lymph nodes sustains the reservoir during ART, we looked for evidence of viral replication in 5 donors after up to 13 years of viral suppression. We characterized proviral populations in lymph nodes and peripheral blood before and during ART, evaluated the levels of viral RNA expression in single lymph node and blood cells, and characterized the proviral integration sites in paired lymph node and blood samples. Proviruses with identical sequences, identical integration sites, and similar levels of RNA expression were found in lymph nodes and blood samples collected during ART, and no single sequence with significant divergence from the pretherapy population was present in either blood or lymph nodes. These findings show that all detectable persistent HIV-1 infection is consistent with maintenance in lymph nodes by clonal proliferation of cells infected before ART and not by ongoing viral replication during ART.


Subject(s)
Anti-Retroviral Agents/administration & dosage , Cell Proliferation/drug effects , Gene Expression Regulation, Viral/drug effects , HIV Infections , HIV-1/physiology , Lymph Nodes , Virus Replication/drug effects , Adult , Female , Follow-Up Studies , HIV Infections/drug therapy , HIV Infections/metabolism , HIV Infections/pathology , HIV Infections/virology , Humans , Lymph Nodes/metabolism , Lymph Nodes/pathology , Lymph Nodes/virology , Male , RNA, Viral/biosynthesis , RNA, Viral/genetics
20.
Lancet HIV ; 6(5): e325-e333, 2019 05.
Article in English | MEDLINE | ID: mdl-30962119

ABSTRACT

Although antiretroviral therapy (ART) is highly effective at inhibiting HIV-1 replication and preventing AIDS, it cannot eradicate the infection. Many studies have used viral genetic information from single-genome and deep sequencing of blood and tissue samples to investigate the mechanisms that sustain the HIV-1 reservoir. Sequence data are analysed by use of measurements of population diversity and divergence and by exploration of phylogenetic associations. The study of intrahost HIV-1 populations on ART requires specific considerations as their dynamics can be shaped by host factors such as cell death and proliferation. Hence, understanding both the biology of HIV-1 persistence and the phylogenetic methods that can be applied to this field is crucial. We conclude that the most suitable phylogenetic methods and evolutionary models for characterising HIV-1 populations on ART include using neighbour-joining trees to identify identical proviral sequences that might result from T-cell proliferation, and using maximum-likelihood analysis to investigate the possibility of ongoing viral replication on ART. Characterising the reservoir for HIV-1 on ART is a high priority for the design of curative interventions.


Subject(s)
Antiretroviral Therapy, Highly Active , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/classification , HIV-1/genetics , Phylogeny , DNA, Viral , Evolution, Molecular , Genetic Variation , HIV Infections/immunology , HIV-1/immunology , Host-Pathogen Interactions , Humans , Viral Load , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...