Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Behav ; 102(5): 532-7, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21195723

ABSTRACT

During the breeding season, two distinct male phenotypes are exhibited by red-sided garter snakes (Thamnophis sirtalis parietalis), with courtship behavior being directed not only toward females, but also toward a sub-population of males called she-males. She-males are morphologically identical to other males except for a circulating androgen level three times that of normal males and their ability to produce a female-like pheromone. As in other vertebrates, limbic nuclei in the red-sided garter snake brain are involved in the control of sexual behaviors. For example, an intact anterior hypothalamus pre-optic area (AHPOA) is essential for the initiation and maintenance of reproduction. To determine if brain morphology varies among the three behavioral phenotypes (i.e., males, she-males, and females) during the breeding season, we examined the volume, cell size and cell density of the AHPOA as well as a control region, the external nucleus of the optic tract (ENOT). We used Luxol Fast Blue and Ziehl's Fuchsin to visualize neurons and glial cells, respectively. No significant differences were observed among the three behavioral phenotypes in the volume, cell size or density in the control region. In contrast, the volume, cell size and density of the AHPOA of she-males were significantly greater than those of both male and female snakes. While the volume of the AHPOA was significantly greater in females compared to males, no differences were observed in cell size or density. These differences in brain morphology suggest a possible underlying mechanism for phenotypic-specific behavioral patterns.


Subject(s)
Colubridae/anatomy & histology , Neurons/cytology , Preoptic Area/cytology , Prosencephalon/cytology , Sex Differentiation/physiology , Animals , Cell Count , Cell Size , Female , Male , Neuroglia/cytology , Phenotype , Sexual Behavior, Animal/physiology
2.
J Neurophysiol ; 103(2): 733-45, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19939956

ABSTRACT

Cholinergic activation profoundly affects vertebrate forebrain networks, but pathway, cell type, and modality specificity remain poorly understood. Here we investigated cell-specific cholinergic modulation of neurons in the zebra finch forebrain song control nucleus HVC using in vitro whole cell recordings. The HVC contains projection neurons that exclusively project to either another song motor nucleus RA (robust nucleus of the arcopallium) (HVC-RAn) or the basal ganglia Area X (HVC-Xn) and these populations are synaptically coupled by a network of GABAergic interneurons. Among HVC-RAn, we observed two physiologically distinct classes that fire either phasically or tonically to injected current. Muscarine excited phasic HVC-RAn and most HVC-Xn. Effects were observed under conditions of blockade of fast synaptic transmission and were reversed by atropine. In contrast, unlike what is commonly observed in mammalian systems, HVC interneurons were inhibited by muscarine and these effects were reversed by atropine. Thus cholinergic modulation reconfigures the HVC network in a more complex fashion than that implied by monolithic "gating." The two projection pathways are decoupled through suppression of the inhibitory network that links them, whereas each is simultaneously predominantly excited. We speculate that fluctuating cholinergic tone in HVC could modulate the interaction of song motor commands with basal ganglia circuitry associated with song perception and modification. Furthermore, if the in vitro distinction between RA-projecting neurons that we observed is also present in vivo, then the song system motor pathway exhibits greater physiological diversity than has been commonly assumed.


Subject(s)
Acetylcholine/metabolism , Action Potentials/physiology , Finches/physiology , Nerve Net/physiology , Neurons/physiology , Prosencephalon/physiology , Vocalization, Animal/physiology , Animals , Cholinergic Fibers/physiology , Male , Neuronal Plasticity/physiology
3.
J Chem Neuroanat ; 23(1): 59-71, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11756010

ABSTRACT

Until recently, it has been difficult to identify the exact location of aromatase containing cells in the brain. The development of new antibodies has provided a sensitive tool to analyze the distribution of aromatase immunoreactive (ARO-ir) material at a cellular level of resolution. In the present study we examined, for the first time, the distribution of ARO-ir cells in the brain of a reptile, the red-sided garter snake, at the beginning of the winter dormancy. ARO-ir cells were found at all rostro-caudal levels in the red-sided garter snake brain. Although weakly stained cells were distributed throughout the brain, more intensely immunoreactive cells were primarily concentrated in the preoptic area, anterior hypothalamus, septum and nucleus sphericus. Although androgens are elevated upon emergence from hibernation in the male red-sided garter snake, initiation of courtship behavior appears to be independent of direct androgen control. To date, the only known stimulus found to initiate courtship is a period of low temperature dormancy followed by exposure to warm temperatures. Circumstantial data, however, suggest an indirect role in the activation of male copulatory behavior for estrogenic metabolites of testosterone produced in the brain by aromatization during the winter dormancy. This study provides the first documentation of the distribution of ARO-ir cells in a reptilian species and demonstrates that while the aromatase enzyme occurs in most regions of the brain, the ARO-ir cells that appear to contain the highest concentration of enzyme are clustered in brain areas classically associated with the control of courtship behavior and mating in vertebrates. These data are consistent with the idea that estrogens locally produced in the brain may participate in some way to the activation of sexual behavior in this species also. This notion should now be experimentally tested by analyzing annual changes in aromatase activity and immunoreactivity and assessing the effects of pharmacological blockade of the enzyme activity at different times of the year.


Subject(s)
Aromatase/metabolism , Colubridae/metabolism , Hibernation , Prosencephalon/metabolism , Animals , Colubridae/physiology , Hibernation/physiology , Immunohistochemistry , Male , Prosencephalon/cytology , Prosencephalon/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...