Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Brain Behav Immun Health ; 11: 100190, 2021 Feb.
Article in English | MEDLINE | ID: mdl-34589727

ABSTRACT

BACKGROUND: Toxoplasmosis is caused by the parasite Toxoplasma gondii that can infect the central nervous system (CNS), promoting neuroinflammation, neuronal loss, neurotransmitter imbalance and behavioral alterations. T. gondii infection is also related to neuropsychiatric disorders such as schizophrenia. The pathogenicity and inflammatory response in rodents are different to the case of humans, compromising the correlation between the behavioral alterations and physiological modifications observed in the disease. In the present work we used BrainSpheres, a 3D CNS model derived from human pluripotent stem cells (iPSC), to investigate the morphological and biochemical repercussions of T. gondii infection in human neural cells. METHODS: We evaluated T. gondii ME49 strain proliferation and cyst formation in both 2D cultured human neural cells and BrainSpheres. Aspects of cell morphology, ultrastructure, viability, gene expression of neural phenotype markers, as well as secretion of inflammatory mediators were evaluated for 2 and 4 weeks post infection in BrainSpheres. RESULTS: T. gondii can infect BrainSpheres, proliferating and inducing cysts formation, neural cell death, alteration in neural gene expression and triggering the release of several inflammatory mediators. CONCLUSIONS: BrainSpheres reproduce many aspects of T. gondii infection in human CNS, constituting a useful model to study the neurotoxicity and neuroinflammation mediated by the parasite. In addition, these data could be important for future studies aiming at better understanding possible correlations between psychiatric disorders and human CNS infection with T. gondii.

2.
Heliyon ; 5(6): e01857, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31198874

ABSTRACT

Researchers have used dogs with neurological sequelae caused by distemper as an experimental model for multiple sclerosis, owing to the similarities of the neuropathological changes between distemper virus-induced demyelinating leukoencephalitis and multiple sclerosis in humans. However, little is known about the role of mesenchymal stem cells in treating such clinical conditions. Therefore, we investigated the use of mesenchymal stem cells in four dogs with neurological lesions caused by the distemper virus. During the first year after cellular therapy, the animals did not demonstrate significant changes in their locomotive abilities. However, the intense (Grade V) myoclonus in three animals was reduced to a moderate (Grade IV) level. At one year after the mesenchymal stem cell infusions, three animals regained functional ambulation (Grade I), and all four dogs started to move independently (Grades I and II). In two animals, the myoclonic severity had become mild (Grade III). It was concluded that the use of mesenchymal stem cells could improve the quality of life of dogs with neurological sequelae caused by canine distemper, thus presenting hope for similar positive results in human patients with multiple sclerosis.

SELECTION OF CITATIONS
SEARCH DETAIL