Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474299

ABSTRACT

NanoFAST is the smallest fluorogen-activating protein, consisting of only 98 amino acids, used as a genetically encoded fluorescent tag. Previously, only a single fluorogen with an orange color was revealed for this protein. In the present paper, using rational mutagenesis and in vitro screening of fluorogens libraries, we expanded the color palette of this tag. We discovered that E46Q is one of the key substitutions enabling the range of possible fluorogens to be expanded. The introduction of this and several other substitutions has made it possible to use not only orange but also red and green fluorogens with the modified protein.


Subject(s)
Fluorescent Dyes , Proteins , Fluorescent Dyes/chemistry
2.
Int J Mol Sci ; 24(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37373071

ABSTRACT

In this work, we have shown that the introduction of a trifluoromethyl group into the me-ta-position of arylidene imidazolones (GFP chromophore core) leads to a dramatic increase in their fluorescence in nonpolar and aprotic media. The presence of a pronounced solvent-dependent gradation of fluorescence intensity makes it possible to use these substances as fluorescent polarity sensors. In particular, we showed that one of the created compounds could be used for selective labeling of the endoplasmic reticulum of living cells.


Subject(s)
Coloring Agents , Green Fluorescent Proteins , Solvents , Spectrometry, Fluorescence
3.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175667

ABSTRACT

In this work, we showed that the well-known NanoLuc luciferase can act as a fluorogen activating protein for various arylidene-imidazolones structurally similar to the Kaede protein chromophore. We showed that such compounds can be used as fluorescent sensors for this protein and can also be used in pairs with it in fluorescent microscopy as a genetically encoded tag.


Subject(s)
Fluorescent Dyes , Fluorescent Dyes/metabolism , Luciferases/genetics , Microscopy, Fluorescence
4.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36232662

ABSTRACT

NanoFAST is a fluorogen-activating protein and can be considered one of the smallest encodable fluorescent tags. Being a shortened variant of another fluorescent tag, FAST, nanoFAST works nicely only with one out of all known FAST ligands. This substantially limits the applicability of this protein. To find the reason for such a behavior, we investigated the spatial structure and dynamics of nanoFAST, both in the apo state and in the complex with its fluorogen molecule, using the solution NMR spectroscopy. We showed that the truncation of FAST did not affect the structure of the remaining part of the protein. Our data suggest that the deleted N-terminus of FAST destabilizes the C-terminal domain in the apo state. While it does not contact the fluorogen directly, it serves as a free energy reservoir that enhances the ligand binding propensity of the protein. The structure of nanoFAST/HBR-DOM2 complex reveals the atomistic details of nanoFAST interactions with the rhodanine-based ligands and explains the ligand specificity. NanoFAST selects ligands with the lowest dissociation constants, 2,5-disubstituted 4-hydroxybenzyldienerhodainines, which allow the non-canonical intermolecular CH-N hydrogen bonding and provide the optimal packing of the ligand within the hydrophobic cavity of the protein.


Subject(s)
Rhodanine , Hydrogen Bonding , Ligands , Magnetic Resonance Spectroscopy , Proteins
5.
Molecules ; 27(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36014513

ABSTRACT

A new simple one-pot two-step protocol for the synthesis of 2-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate from 2-(2-(benzylamino)benzylidene)malonate under the action of BF3·Et2O was developed. It was shown that the reaction proceeds through the formation of a stable iminium intermediate containing a difluoroboryl bridge in the dicarbonyl fragment of the molecule.


Subject(s)
Quinolines , Carboxylic Acids , Cyclization
6.
Commun Biol ; 5(1): 706, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840781

ABSTRACT

"Fluorescence-Activating and absorption-Shifting Tag" (FAST) is a well-studied fluorogen-activating protein with high brightness and low size, able to activate a wide range of fluorogens. This makes FAST a promising target for both protein and fluorogen optimization. Here, we describe the structure-based rational design of the enhanced FAST mutants, optimized for the N871b fluorogen. Using the spatial structure of the FAST/N871b complex, NMR relaxation analysis, and computer simulations, we identify the mobile regions in the complex and suggest mutations that could stabilize both the protein and the ligand. Two of our mutants appear brighter than the wild-type FAST, and these mutants provide up to 35% enhancement for several other fluorogens of similar structure, both in vitro and in vivo. Analysis of the mutants by NMR reveals that brighter mutants demonstrate the highest stability and lowest length of intermolecular H-bonds. Computer simulations provide the structural basis for such stabilization.


Subject(s)
Fluorescent Dyes , Proteins , Fluorescence , Fluorescent Dyes/chemistry
7.
Int J Mol Sci ; 22(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34948442

ABSTRACT

Bioimaging techniques require development of a wide variety of fluorescent probes that absorb and emit red light. One way to shift absorption and emission of a chromophore to longer wavelengths is to modify its chemical structure by adding polycyclic aromatic hydrocarbon (PAH) fragments, thus increasing the conjugation length of a molecule while maintaining its rigidity. Here, we consider four novel classes of conformationally locked Green Fluorescent Protein (GFP) chromophore derivatives obtained by extending their aromatic systems in different directions. Using high-level ab initio quantum chemistry calculations, we show that the alteration of their electronic structure upon annulation may unexpectedly result in a drastic change of their fluorescent properties. A flip of optically bright and dark electronic states is most prominent in the symmetric fluorene-based derivative. The presence of a completely dark lowest-lying excited state is supported by the experimentally measured extremely low fluorescence quantum yield of the newly synthesized compound. Importantly, one of the asymmetric modes of annulation provides a very promising strategy for developing red-shifted molecular emitters with an absorption wavelength of ∼600 nm, having no significant impact on the character of the bright S-S1 transition.


Subject(s)
Fluorescent Dyes/chemistry , Green Fluorescent Proteins/chemical synthesis , Polycyclic Aromatic Hydrocarbons/chemistry , Green Fluorescent Proteins/chemistry , Molecular Structure , Quantum Theory , Spectrometry, Fluorescence
8.
Biomolecules ; 11(10)2021 09 26.
Article in English | MEDLINE | ID: mdl-34680042

ABSTRACT

Green fluorescent protein (GFP) chromophore and its congeners draw significant attention mostly for bioimaging purposes. In this work we probed these compounds as antiviral agents. We have chosen LTR-III DNA G4, the major G-quadruplex (G4) present in the long terminal repeat (LTR) promoter region of the human immunodeficiency virus-1 (HIV-1), as the target for primary screening and designing antiviral drug candidates. The stabilization of this G4 was previously shown to suppress viral gene expression and replication. FRET-based high-throughput screening (HTS) of 449 GFP chromophore-like compounds revealed a number of hits, sharing some general structural features. Structure-activity relationships (SAR) for the most effective stabilizers allowed us to establish structural fragments, important for G4 binding. Synthetic compounds, developed on the basis of SAR analysis, exhibited high LTR-III G4 stabilization level. NMR spectroscopy and molecular modeling revealed the possible formation of LTR-III G4-ligand complex with one of the lead selective derivative ZS260.1 positioned within the cavity, thus supporting the LTR-III G4 attractiveness for drug targeting. Selected compounds showed moderate activity against HIV-I (EC50 1.78-7.7 µM) in vitro, but the activity was accompanied by pronounced cytotoxicity.


Subject(s)
G-Quadruplexes , Green Fluorescent Proteins/chemistry , HIV Infections/drug therapy , HIV-1/drug effects , Anti-HIV Agents/chemistry , Green Fluorescent Proteins/pharmacology , HIV Infections/virology , HIV Long Terminal Repeat/drug effects , HIV Long Terminal Repeat/genetics , HIV-1/genetics , HIV-1/pathogenicity , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Structure-Activity Relationship
9.
J Chem Phys ; 155(7): 071103, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34418944

ABSTRACT

We introduce Active Orbital Preservation for Multiconfigurational Self-Consistent Field (AOP-MCSCF), an automated approach to improving the consistency of active space orbitals over multiple molecular configurations. Our approach is based on maximum overlap with a reference set of active space orbitals taken from a single geometry of a chromophore in the gas phase and can be used to automatically preserve the appropriate orbitals of the chromophore across multiple thermally sampled configurations, even when the chromophore is solvated by quantum-mechanically treated water molecules. In particular, using the singular value decomposition of a Molecular Orbital (MO) overlap matrix between the system and reference, we rotate the MOs of the system to align with the reference active space orbitals and use the resulting rotated orbitals as an initial guess to a MCSCF calculation. We demonstrate the approach on aqueous p-hydroxybenzylidene-imidazolinone (HBI) and find that AOP-MCSCF converges to the "correct" orbitals for over 90% of 3000 thermally sampled configurations. In addition, we compute the linear absorption spectrum and find excellent agreement with new experimental measurements up to 5.4 eV (230 nm). We show that electrostatic contributions to the solvation energy of HBI largely explain the observed state-dependent solvatochromism.

10.
Phys Chem Chem Phys ; 23(27): 14636-14648, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34212170

ABSTRACT

Since green fluorescent protein (GFP) has revolutionized molecular and cellular biology for about three decades, there has been a keen interest in understanding, designing, and controlling the fluorescence properties of GFP chromophore (i.e., HBDI) derivatives from the protein matrix to solution. Amongst these cross-disciplinary efforts, the elucidation of excited-state dynamics of HBDI derivatives holds the key to correlating the light-induced processes and fluorescence quantum yield (FQY). Herein, we implement steady-state electronic spectroscopy, femtosecond transient absorption (fs-TA), femtosecond stimulated Raman spectroscopy (FSRS), and quantum calculations to study a series of mono- and dihalogenated HBDI derivatives (X = F, Cl, Br, 2F, 2Cl, and 2Br) in basic aqueous solution, gaining new insights into the photophysical reaction coordinates. In the excited state, the halogenated "floppy" chromophores exhibit an anti-heavy atom effect, reflected by strong correlations between FQY vs. Franck-Condon energy (EFC) or Stokes shift, and knrvs. EFC, as well as a swift bifurcation into the I-ring (major) and P-ring (minor) twisting motions. In the ground state, both ring-twisting motions become more susceptible to sterics and exhibit spectral signatures from the halogen-dependent hot ground-state absorption band decay in TA data. We envision this type of systematic analysis of the halogenated HBDI derivatives to provide guiding principles for the site-specific modification of GFP chromophores, and expand design space for brighter and potentially photoswitchable organic chemical probes in aqueous solution with discernible spectral signatures throughout the photocycle.


Subject(s)
Fluorescent Dyes/chemistry , Green Fluorescent Proteins/chemistry , Halogenation , Kinetics , Light , Models, Molecular , Photochemical Processes , Protein Conformation , Spectrometry, Fluorescence , Structure-Activity Relationship
11.
Chemistry ; 27(35): 8946-8950, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33938061

ABSTRACT

Fluorescence-activating proteins (FAPs) that bind a chromophore and activate its fluorescence have gained popularity in bioimaging. The fluorescence-activating and absorption-shifting tag (FAST) is a light-weight FAP that enables fast reversible fluorogen binding, thus advancing multiplex and super-resolution imaging. However, the rational design of FAST-specific fluorogens with large fluorescence enhancement (FE) remains challenging. Herein, a new fluorogen directly engineered from green fluorescent protein (GFP) chromophore by a unique double-donor-one-acceptor strategy, which exhibits an over 550-fold FE upon FAST binding and a high extinction coefficient of approximately 100,000 M-1 cm-1 , is reported. Correlation analysis of the excited state nonradiative decay rates and environmental factors reveal that the large FE is caused by nonpolar protein-fluorogen interactions. Our deep insights into structure-function relationships could guide the rational design of bright fluorogens for live-cell imaging with extended spectral properties such as redder emissions.


Subject(s)
Fluorescent Dyes , Green Fluorescent Proteins/genetics , Microscopy, Fluorescence
12.
Chem Sci ; 12(19): 6719-6725, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-34040747

ABSTRACT

One of the essential characteristics of any tag used in bioscience and medical applications is its size. The larger the label, the more it may affect the studied object, and the more it may distort its behavior. In this paper, using NMR spectroscopy and X-ray crystallography, we have studied the structure of fluorogen-activating protein FAST both in the apo form and in complex with the fluorogen. We showed that significant change in the protein occurs upon interaction with the ligand. While the protein is completely ordered in the complex, its apo form is characterized by higher mobility and disordering of its N-terminus. We used structural information to design the shortened FAST (which we named nanoFAST) by truncating 26 N-terminal residues. Thus, we created the shortest genetically encoded tag among all known fluorescent and fluorogen-activating proteins, which is composed of only 98 amino acids.

13.
Chemistry ; 27(12): 3986-3990, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33336838

ABSTRACT

Using benzylidene imidazolone core, we created a panel of color-shifted fluorogenic ligands for FAST protein without compromise to the binding efficiency and the utility for live-cell protein labeling. This study highlights the potential of benzylidene imidazolones derivatives for rapid expansion of a pallet of live-cell fluorogenic labeling tools.


Subject(s)
Fluorescent Dyes , Proteins
14.
Sensors (Basel) ; 20(3)2020 Feb 09.
Article in English | MEDLINE | ID: mdl-32050425

ABSTRACT

Aptasensors became popular instruments in bioanalytical chemistry and molecular biology. To increase specificity, perspective signaling elements in aptasensors can be separated into a G-quadruplex (G4) part and a free fluorescent dye that lights up upon binding to the G4 part. However, current systems are limited by relatively low enhancement of fluorescence upon dye binding. Here, we added duplex modules to G4 structures, which supposedly cause the formation of a dye-binding cavity between two modules. Screening of multiple synthetic GFP chromophore analogues and variation of the duplex module resulted in the selection of dyes that light up after complex formation with two-module structures and their RNA analogues by up to 20 times compared to parent G4s. We demonstrated that the short duplex part in TBA25 is preferable for fluorescence light up in comparison to parent TBA15 molecule as well as TBA31 and TBA63 stabilized by longer duplexes. Duplex part of TBA25 may be partially unfolded and has reduced rigidity, which might facilitate optimal dye positioning in the joint between G4 and the duplex. We demonstrated dye enhancement after binding to modified TBA, LTR-III, and Tel23a G4 structures and propose that such architecture of short duplex-G4 signaling elements will enforce the development of improved aptasensors.


Subject(s)
Fluorescent Dyes/chemistry , G-Quadruplexes , Green Fluorescent Proteins/chemistry , Fluorescence , Nucleic Acid Conformation , Nucleic Acid Denaturation , Oligonucleotides/chemistry , Transition Temperature
15.
J Chem Phys ; 152(2): 021101, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31941340

ABSTRACT

Green fluorescent protein (GFP) has enabled a myriad of bioimaging advances due to its photophysical and photochemical properties. To deepen the mechanistic understanding of such light-induced processes, novel derivatives of GFP chromophore p-HBDI were engineered by fluorination or bromination of the phenolic moiety into superphotoacids, which efficiently undergo excited-state proton transfer (ESPT) in aqueous solution within the short lifetime of the excited state, as opposed to p-HBDI where efficient ESPT is not observed. In addition, we tuned the excited-state lifetime from picoseconds to nanoseconds by conformational locking of the p-HBDI backbone, essentially transforming the nonfluorescent chromophores into highly fluorescent ones. The unlocked superphotoacids undergo a barrierless ESPT without much solvent activity, whereas the locked counterparts exhibit two distinct solvent-involved ESPT pathways. Comparative analysis of femtosecond transient absorption spectra of these unlocked and locked superphotoacids reveals that the ESPT rates adopt an "inverted" kinetic behavior as the thermodynamic driving force increases upon locking the backbone. Further experimental and theoretical investigations are expected to shed more light on the interplay between the modified electronic structure (mainly by dihalogenation) and nuclear motions (by conformational locking) of the functionalized GFP derivatives (e.g., fluorescence on and off).

16.
J Org Chem ; 84(23): 15417-15428, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31702147

ABSTRACT

An efficient and high-yielding strategy to prepare "unsymmetrical" 4-aryl-isoxazol-3,5-dicarboxylic acid derivatives from nitroacetic esters and aromatic aldehydes has been developed. The strategy is based on the isolation and usage of the previously missed intermediate of the Dornow reaction-5-hydroxy-6-oxo-4-aryl-6H-1,2-oxazine-3-carboxylates. In addition, the mechanism of the Dornow reaction was partially revised.

17.
Chemistry ; 25(41): 9592-9596, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31111975

ABSTRACT

A genetically encoded fluorescent tag for live cell microscopy is presented. This tag is composed of previously published fluorogen-activating protein FAST and a novel fluorogenic derivative of green fluorescent protein (GFP)-like chromophore with red fluorescence. The reversible binding of the novel fluorogen and FAST is accompanied by three orders of magnitude increase in red fluorescence (580-650 nm). The proposed dye instantly stains target cellular proteins fused with FAST, washes out in a minute timescale, and exhibits higher photostability of the fluorescence signal in confocal and widefield microscopy, in contrast with previously published fluorogen:FAST complexes.


Subject(s)
Fluorescent Dyes/chemistry , Green Fluorescent Proteins/chemistry , Rhodanine/analogs & derivatives , Cell Nucleus/ultrastructure , Fluorescence , HEK293 Cells , HeLa Cells , Humans , Microscopy, Confocal , Microscopy, Fluorescence , Optical Imaging
18.
J Phys Chem B ; 123(17): 3804-3821, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30964985

ABSTRACT

Proton transfer remains one of the most fundamental processes in chemistry and biology. Superphotoacids provide an excellent platform to delineate the excited-state proton transfer (ESPT) mechanism on ultrafast time scales and enable one to precisely control photoacidity and other pertinent functionalities such as fluorescence. We modified the GFP core ( p-HBDI chromophore) into two series of highly fluorescent photoacids by fluorinating the phenolic ring and conformationally locking the backbone (i.e., biomimetics). The trifluorinated derivatives, M3F and P3F, represent two of the strongest superphotoacids with p Ka* values of -5.0 and -5.5, respectively, and they can efficiently transfer a proton to organic solvents like methanol. Tunable femtosecond stimulated Raman spectroscopy (FSRS) and femtosecond transient absorption (fs-TA) were employed to dissect the ESPT of M3F and P3F in methanol, particularly with structural dynamics information. By virtue of resonantly enhanced FSRS signal and global analysis of fs-TA spectra, we revealed an inhomogeneous ESPT mechanism consisting of three parallel routes following the initial small-scale proton motion and contact ion-pair formation within ∼300 fs: The first route consists of ultrafast protolytic dissociation facilitated by the pre-existing, largely optimized H-bonding chain; the second route is limited by solvent reorientation that establishes a suitable H-bonding wire for proton separation; the third route is controlled by rotational diffusion that requires rotation of the anisotropically reactive photoacid in a bulky solvent with a complex H-bonding structure over larger distances. Furthermore, we provided new design principles of enhancing photoacidity in a synergistic manner: incorporating electron-withdrawing groups into proximal (often as "donor") and distal (often as "acceptor") ring moieties of the dissociative hydroxyl group to lower the ground-state p Ka and increase the Δp Ka, respectively.

19.
Chem Commun (Camb) ; 55(17): 2537-2540, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30742139

ABSTRACT

We strategically modified the GFP core via chemical synthesis to make redder and brighter biomimetic fluorophores. Based on quantum calculations, solvatochromism analysis, and femtosecond Raman, we unveiled the additive effect of tuning the electronic ground and excited states, respectively, to achieve a dramatic emission redshift with a "double-donor-one-acceptor" structure.

20.
RSC Adv ; 9(66): 38730-38734, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-35540244

ABSTRACT

We design a novel class of excited-state locked GFP chromophores by introducing an amine group at the double exo-bond and a difluoroboryl bridge. We show that these chromophores intrinsically exhibit a very large Stokes shift of 1 eV. Further tuning through chemical modifications of their aryl substituents makes them environmentally sensitive.

SELECTION OF CITATIONS
SEARCH DETAIL
...