Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 23(7): e2300019, 2023 07.
Article in English | MEDLINE | ID: mdl-37059590

ABSTRACT

For tissue engineering of skeletal muscles, there is a need for biomaterials which do not only allow cell attachment, proliferation, and differentiation, but also support the physiological conditions of the tissue. Next to the chemical nature and structure of the biomaterial, its response to the application of biophysical stimuli, such as mechanical deformation or application of electrical pulses, can impact in vitro tissue culture. In this study, gelatin methacryloyl (GelMA) is modified with hydrophilic 2-acryloxyethyltrimethylammonium chloride (AETA) and 3-sulfopropyl acrylate potassium (SPA) ionic comonomers to obtain a piezoionic hydrogel. Rheology, mass swelling, gel fraction, and mechanical characteristics are determined. The piezoionic properties of the SPA and AETA-modified GelMA are confirmed by a significant increase in ionic conductivity and an electrical response as a function of mechanical stress. Murine myoblasts display a viability of >95% after 1 week on the piezoionic hydrogels, confirming their biocompatibility. The GelMA modifications do not influence the fusion capacity of the seeded myoblasts or myotube width after myotube formation. These results describe a novel functionalization providing new possibilities to exploit piezo-effects in the tissue engineering field.


Subject(s)
Gelatin , Hydrogels , Mice , Animals , Hydrogels/pharmacology , Hydrogels/chemistry , Gelatin/pharmacology , Gelatin/chemistry , Cell Survival , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Tissue Engineering/methods , Methacrylates/pharmacology , Methacrylates/chemistry , Tissue Scaffolds/chemistry
2.
Materials (Basel) ; 15(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36013752

ABSTRACT

Scaffolds can be defined as 3D architectures with specific features (surface properties, porosity, rigidity, biodegradability, etc.) that help cells to attach, proliferate, and to differentiate into specific lineage. For bone regeneration, rather high mechanical properties are required. That is why polylactic acid (PLA) and PLA/hydroxyapatite (HA) scaffolds (10 wt.%) were produced by a peculiar fused filament fabrication (FFF)-derived process. The effect of the addition of HA particles in the scaffolds was investigated in terms of morphology, biological properties, and biodegradation behavior. It was found that the scaffolds were biocompatible and that cells managed to attach and proliferate. Biodegradability was assessed over a 5-month period (according to the ISO 13781-Biodegradability norm) through gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and compression tests. The results revealed that the presence of HA in the scaffolds induced a faster and more complete polymer biodegradation, with a gradual decrease in the molar mass (Mn) and compressive mechanical properties over time. In contrast, the Mn of PLA only decreased during the processing steps to obtain scaffolds (extrusion + 3D-printing) but PLA scaffolds did not degrade during conditioning, which was highlighted by a high retention of the mechanical properties of the scaffolds after conditioning.

SELECTION OF CITATIONS
SEARCH DETAIL
...