Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Microsyst Nanoeng ; 10: 74, 2024.
Article in English | MEDLINE | ID: mdl-38855359

ABSTRACT

Smart, low-cost and portable gas sensors are highly desired due to the importance of air quality monitoring for environmental and defense-related applications. Traditionally, electrochemical and nondispersive infrared (IR) gas sensors are designed to detect a single specific analyte. Although IR spectroscopy-based sensors provide superior performance, their deployment is limited due to their large size and high cost. In this study, a smart, low-cost, multigas sensing system is demonstrated consisting of a mid-infrared microspectrometer and a machine learning algorithm. The microspectrometer is a metasurface filter array integrated with a commercial IR camera that is consumable-free, compact ( ~ 1 cm3) and lightweight ( ~ 1 g). The machine learning algorithm is trained to analyze the data from the microspectrometer and predict the gases present. The system detects the greenhouse gases carbon dioxide and methane at concentrations ranging from 10 to 100% with 100% accuracy. It also detects hazardous gases at low concentrations with an accuracy of 98.4%. Ammonia can be detected at a concentration of 100 ppm. Additionally, methyl-ethyl-ketone can be detected at its permissible exposure limit (200 ppm); this concentration is considered low and nonhazardous. This study demonstrates the viability of using machine learning with IR spectroscopy to provide a smart and low-cost multigas sensing platform.

2.
ACS Nano ; 17(19): 19254-19264, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37755696

ABSTRACT

Two-dimensional (2D) layered metal dichalcogenides constitute a promising class of materials for photodetector applications due to their excellent optoelectronic properties. The most common photodetectors, which work on the principle of photoconductive or photovoltaic effects, however, require either the application of external voltage biases or built-in electric fields, which makes it challenging to simultaneously achieve high responsivities across broad-band wavelength excitation─especially beyond the material's nominal band gap─while producing low dark currents. In this work, we report the discovery of an intricate phonon-photon-electron coupling─which we term the acoustophotoelectric effect─in SnS2 that facilitates efficient photodetection through the application of 100 MHz order propagating surface acoustic waves (SAWs). This effect not only reduces the band gap of SnS2 but also provides the requisite momentum for indirect band gap transition of the photoexcited charge carriers, to enable broad-band photodetection beyond the visible light range, while maintaining pA-order dark currents─ without the need for any external voltage bias. More specifically, we show in the infrared excitation range that it is possible to achieve up to 8 orders of magnitude improvement in the material's photoresponsivity compared to that previously reported for SnS2-based photodetectors, in addition to exhibiting superior performance compared to most other 2D materials reported to date for photodetection.

3.
Nanotechnology ; 34(49)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37625398

ABSTRACT

Large-area epitaxial growth of III-V nanowires and thin films on van der Waals substrates is key to developing flexible optoelectronic devices. In our study, large-area InAs nanowires and planar structures are grown on hexagonal boron nitride templates using metal organic chemical vapor deposition method without any catalyst or pre-treatments. The effect of basic growth parameters on nanowire yield and thin film morphology is investigated. Under optimised growth conditions, a high nanowire density of 2.1×109cm-2is achieved. A novel growth strategy to achieve uniform InAs thin film on h-BN/SiO2/Si substrate is introduced. The approach involves controlling the growth process to suppress the nucleation and growth of InAs nanowires, while promoting the radial growth of nano-islands formed on the h-BN surface. A uniform polycrystalline InAs thin film is thus obtained over a large area with a dominant zinc-blende phase. The film exhibits near-band-edge emission at room temperature and a relatively high Hall mobility of 399 cm-2/(Vs). This work suggests a promising path for the direct growth of large-area, low-temperature III-V thin films on van der Waals substrates.

4.
ACS Nano ; 17(12): 11771-11782, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37318109

ABSTRACT

A single photodetector capable of switching its peak spectral photoresponse between two wavelength bands is highly useful, particularly for the infrared (IR) bands in applications such as remote sensing, object identification, and chemical sensing. Technologies exist for achieving dual-band IR detection with bulk III-V and II-VI materials, but the high cost and complexity as well as the necessity for active cooling associated with some of these technologies preclude their widespread adoption. In this study, we leverage the advantages of low-dimensional materials to demonstrate a bias-selectable dual-band IR detector that operates at room temperature by using lead sulfide colloidal quantum dots and black phosphorus nanosheets. By switching between zero and forward bias, these detectors switch peak photosensitive ranges between the mid- and short-wave IR bands with room temperature detectivities of 5 × 109 and 1.6 × 1011 cm Hz1/2 W-1, respectively. To the best of our knowledge, these are the highest reported room temperature values for low-dimensional material dual-band IR detectors to date. Unlike conventional bias-selectable detectors, which utilize a set of back-to-back photodiodes, we demonstrate that under zero/forward bias conditions the device's operation mode instead changes between a photodiode and a phototransistor, allowing additional functionalities that the conventional structure cannot provide.

5.
Nat Commun ; 13(1): 4511, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35922424

ABSTRACT

Polaritons enable subwavelength confinement and highly anisotropic flows of light over a wide spectral range, holding the promise for applications in modern nanophotonic and optoelectronic devices. However, to fully realize their practical application potential, facile methods enabling nanoscale active control of polaritons are needed. Here, we introduce a hybrid polaritonic-oxide heterostructure platform consisting of van der Waals crystals, such as hexagonal boron nitride (hBN) or alpha-phase molybdenum trioxide (α-MoO3), transferred on nanoscale oxygen vacancy patterns on the surface of prototypical correlated perovskite oxide, samarium nickel oxide, SmNiO3 (SNO). Using a combination of scanning probe microscopy and infrared nanoimaging techniques, we demonstrate nanoscale reconfigurability of complex hyperbolic phonon polaritons patterned at the nanoscale with high resolution. Hydrogenation and temperature modulation allow spatially localized conductivity modulation of SNO nanoscale patterns, enabling robust real-time modulation and nanoscale reconfiguration of hyperbolic polaritons. Our work paves the way towards nanoscale programmable metasurface engineering for reconfigurable nanophotonic applications.

6.
ACS Appl Mater Interfaces ; 13(38): 45881-45889, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34523918

ABSTRACT

The self-terminated, layered structure of van der Waals materials introduces fundamental advantages for infrared (IR) optoelectronic devices. These are mainly associated with the potential for low noise while maintaining high internal quantum efficiency when reducing IR absorber thicknesses. In this study, we introduce a new van der Waals material candidate, zirconium germanium telluride (ZrGeTe4), to a growing family of promising IR van der Waals materials. We find the bulk form ZrGeTe4 has an indirect band edge around ∼0.5 eV, in close agreement with previous theoretical predictions. This material is found to be stable up to 140 °C and shows minimal compositional variation even after >30 days storage in humid air. We demonstrate simple proof-of-concept broad spectrum photodetectors with responsivities above 0.1 AW-1 across both the visible and short-wave infrared wavelengths. This corresponds to a specific detectivity of ∼109 cm Hz1/2 W-1 at λ = 1.4 µm at room temperature. These devices show a linear photoresponse vs illumination intensity relationship over ∼4 orders of magnitude, and fast rise/fall times of ∼50 ns, also verified by a 3 dB roll-off frequency of 5.9 MHz. As the first demonstration of photodetection using ZrGeTe4, these characteristics measured on a simple proof-of-concept device show the exciting potential of the ZrGeTe4 for room temperature IR optoelectronic applications.

7.
ACS Appl Mater Interfaces ; 13(32): 38544-38552, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34370444

ABSTRACT

Mid-wave and long-wave infrared (MWIR and LWIR) detection play vital roles in applications that include health care, remote sensing, and thermal imaging. However, detectors in this spectral range often require complex fabrication processes and/or cryogenic cooling and are typically expensive, which motivates the development of simple alternatives. Here, we demonstrate broadband (0.43-10 µm) room-temperature photodetection based on copper tetracyanoquinodimethane (CuTCNQ), a metal-organic semiconductor, synthesized via a facile wet-chemical reaction. The CuTCNQ crystals are simply drop-cast onto interdigitated electrode chips to realize photoconductors. The photoresponse is governed by a combination of interband (0.43-3.35 µm) and midgap (3.35-10 µm) transitions. The devices show response times (∼365 µs) that would be sufficient for many infrared applications (e.g., video rate imaging), with a frequency cutoff point of 1 kHz.

8.
Nature ; 596(7871): 232-237, 2021 08.
Article in English | MEDLINE | ID: mdl-34381234

ABSTRACT

Room-temperature optoelectronic devices that operate at short-wavelength and mid-wavelength infrared ranges (one to eight micrometres) can be used for numerous applications1-5. To achieve the range of operating wavelengths needed for a given application, a combination of materials with different bandgaps (for example, superlattices or heterostructures)6,7 or variations in the composition of semiconductor alloys during growth8,9 are used. However, these materials are complex to fabricate, and the operating range is fixed after fabrication. Although wide-range, active and reversible tunability of the operating wavelengths in optoelectronic devices after fabrication is a highly desirable feature, no such platform has been yet developed. Here we demonstrate high-performance room-temperature infrared optoelectronics with actively variable spectra by presenting black phosphorus as an ideal candidate. Enabled by the highly strain-sensitive nature of its bandgap, which varies from 0.22 to 0.53 electronvolts, we show a continuous and reversible tuning of the operating wavelengths in light-emitting diodes and photodetectors composed of black phosphorus. Furthermore, we leverage this platform to demonstrate multiplexed nondispersive infrared gas sensing, whereby multiple gases (for example, carbon dioxide, methane and water vapour) are detected using a single light source. With its active spectral tunability while also retaining high performance, our work bridges a technological gap, presenting a potential way of meeting different requirements for emission and detection spectra in optoelectronic applications.

9.
ACS Nano ; 15(4): 6573-6581, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33749230

ABSTRACT

Long-wave infrared (LWIR) photodetection is of high technological importance, having a wide range of applications that include thermal imaging and spectroscopy. Two-dimensional (2D) noble-transition-metal dichalcogenides, platinum diselenide (PtSe2) in particular, have recently shown great promise for infrared detection. However, previous studies have mainly focused on wavelengths up to the short-wave infrared region. In this work, we demonstrate LWIR photodetectors based on multilayer PtSe2. In addition, we present an optical cavity substrate that enhances the light-matter interaction in 2D materials and thus their photodetection performance in the LWIR spectral region. The PtSe2 photoconductors fabricated on the TiO2/Au optical cavity substrate exhibit responsivities up to 54 mA/W to LWIR illumination at a wavelength of 8.35 µm. Moreover, these devices show a fast photoresponse with a time constant of 54 ns to white light illumination. The findings of this study reveal the potential of multilayer PtSe2 for fast and broadband photodetection from visible to LWIR wavelengths.

10.
Nat Commun ; 11(1): 6086, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33257664

ABSTRACT

Highly confined and low-loss polaritons are known to propagate isotropically over graphene and hexagonal boron nitride in the plane, leaving limited degrees of freedom in manipulating light at the nanoscale. The emerging family of biaxial van der Waals materials, such as α-MoO3 and V2O5, support exotic polariton propagation, as their auxiliary optical axis is in the plane. Here, exploiting this strong in-plane anisotropy, we report edge-tailored hyperbolic polaritons in patterned α-MoO3 nanocavities via real-space nanoimaging. We find that the angle between the edge orientation and the crystallographic direction significantly affects the optical response, and can serve as a key tuning parameter in tailoring the polaritonic patterns. By shaping α-MoO3 nanocavities with different geometries, we observe edge-oriented and steerable hyperbolic polaritons as well as forbidden zones where the polaritons detour. The lifetime and figure of merit of the hyperbolic polaritons can be regulated by the edge aspect ratio of nanocavity.

11.
Adv Mater ; 32(45): e2004247, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32960475

ABSTRACT

Atomically thin materials face an ongoing challenge of scalability, hampering practical deployment despite their fascinating properties. Tin monosulfide (SnS), a low-cost, naturally abundant layered material with a tunable bandgap, displays properties of superior carrier mobility and large absorption coefficient at atomic thicknesses, making it attractive for electronics and optoelectronics. However, the lack of successful synthesis techniques to prepare large-area and stoichiometric atomically thin SnS layers (mainly due to the strong interlayer interactions) has prevented exploration of these properties for versatile applications. Here, SnS layers are printed with thicknesses varying from a single unit cell (0.8 nm) to multiple stacked unit cells (≈1.8 nm) synthesized from metallic liquid tin, with lateral dimensions on the millimeter scale. It is reveal that these large-area SnS layers exhibit a broadband spectral response ranging from deep-ultraviolet (UV) to near-infrared (NIR) wavelengths (i.e., 280-850 nm) with fast photodetection capabilities. For single-unit-cell-thick layered SnS, the photodetectors show upto three orders of magnitude higher responsivity (927 A W-1 ) than commercial photodetectors at a room-temperature operating wavelength of 660 nm. This study opens a new pathway to synthesize reproduceable nanosheets of large lateral sizes for broadband, high-performance photodetectors. It also provides important technological implications for scalable applications in integrated optoelectronic circuits, sensing, and biomedical imaging.

12.
ACS Nano ; 14(10): 13645-13651, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-32955859

ABSTRACT

Thin two-dimensional (2D) material absorbers have the potential to reduce volume-dependent thermal noise in infrared detectors. However, any reduction in noise must be balanced against lower absorption from the thin layer, which necessitates advanced optical architectures. Such architectures can be particularly effective for applications that require detection only within a specific narrow wavelength range. This study presents a Fabry-Pérot cavity enhanced bP/MoS2 midwave infrared (MWIR) photodiode. This simple structure enables tunable narrow-band (down to 0.42 µm full width at half-maximum) photodetection in the 2-4 µm range by adjusting the thickness of the Fabry-Pérot cavity resonator. This is achieved while maintaining room-temperature performance metrics comparable to previously reported 2D MWIR detectors. Zero bias specific detectivity and responsivity values of up to 1.7 × 109 cm Hz1/2 W-1 and 0.11 A W-1 at λ = 3.0 µm are measured with a response time of less than 3 ns. These results introduce a promising family of 2D detectors with applications in MWIR spectroscopy.

13.
ACS Appl Mater Interfaces ; 12(14): 16997-17003, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32203662

ABSTRACT

Chromism-based optical filters is a niche field of research, due to there being only a handful of electrochromic materials. Typically, electrochromic transition metal oxides such as MoO3 and WO3 are utilized in applications such as smart windows and electrochromic devices (ECD). Herein, we report MoO3-x-based electrically activated ultraviolet (UV) filters. The MoO3-x grown on indium tin oxide (ITO) substrate is mechanically assembled onto an electrically activated proton exchange membrane. Reversible H+ injection/extraction in MoO3-x is employed to switch the optical transmittance, enabling an electrically activated optical filter. The devices exhibit broadband transmission modulation (325-800 nm), with a peak of ∼60% in the UV-A range (350-392 nm). Comparable switching times of 8 s and a coloration efficiency of up to 116 cm2 C-1 are achieved.

14.
ACS Appl Mater Interfaces ; 11(43): 40189-40195, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31590483

ABSTRACT

Metal oxide-based gas sensor technology is promising due to their practical applications in toxic and hazardous gas detection. Orthorhombic α-MoO3 is a planar metal oxide with a unique layered structure, which can be obtained in a two-dimensional (2D) form. In the 2D form, the larger surface area-to-volume ratio of the material facilitates significantly higher interaction with gas molecules while exhibiting exceptional transport properties. The presence of oxygen vacancies results in nonstoichiometric MoO3 (MoO3-x), which further enhances the charge carrier mobility. Here, we study dual gas sensing characteristics and mechanism of 2D α-MoO3-x. Herein, conductometric dual gas sensors based on chemical vapor deposited 2D α-MoO3-x are developed and demonstrated. A facile transfer process is established to integrate the material into any arbitrary substrate. The sensors show high selectivity toward NO2 and H2S gases with response and recovery rates of 295.0 and 276.0 kΩ/s toward NO2 and 28.5 and 48.0 kΩ/s toward H2S, respectively. These gas sensors also show excellent cyclic endurance with a variation in ΔR ∼ 112 ± 1.64 and 19.5 ± 1.13 MΩ for NO2 and H2S, respectively. As such, this work presents the viability of planar 2D α-MoO3-x as a dual selective gas sensor.

15.
Nanoscale ; 10(42): 19711-19719, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30141809

ABSTRACT

Non-volatile resistive memory devices are theorized to be the most promising pathway towards analog memory and neuromorphic computing. Two-dimensional MoO3 is a versatile planar transition metal oxide, whose properties can be readily tuned, making it anywhere from a wide bandgap semiconductor to a semi-metal. Successful integration of such a planar metal oxide into resistive memory can enable adaptive and low power memory applications. Here, we investigate the non-volatile and reversible resistive switching behaviour of oxygen deficient MoOx in a cross-point metal/insulator/metal (MIM) architecture. Layered MoOx films are synthesised using chemical vapour deposition (CVD) and reveal excellent resistive switching performance with relatively low electroforming and operating voltages. Switching ratios of ∼103 and stable data retention of >104 s are achieved. As such, this work demonstrates the viability of MoOx as a resistive memory element and paves the way for future two-dimensional resistive memory technologies.

16.
Adv Mater ; 29(27)2017 Jul.
Article in English | MEDLINE | ID: mdl-28497880

ABSTRACT

Few-layer black phosphorous (BP) has emerged as a promising candidate for next-generation nanophotonic and nanoelectronic devices. However, rapid ambient degradation of mechanically exfoliated BP poses challenges in its practical deployment in scalable devices. To date, the strategies employed to protect BP have relied upon preventing its exposure to atmospheric conditions. Here, an approach that allows this sensitive material to remain stable without requiring its isolation from the ambient environment is reported. The method draws inspiration from the unique ability of biological systems to avoid photo-oxidative damage caused by reactive oxygen species. Since BP undergoes similar photo-oxidative degradation, imidazolium-based ionic liquids are employed as quenchers of these damaging species on the BP surface. This chemical sequestration strategy allows BP to remain stable for over 13 weeks, while retaining its key electronic characteristics. This study opens opportunities to practically implement BP and other environmentally sensitive 2D materials for electronic applications.

17.
Small ; 11(6): 640-52, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25380184

ABSTRACT

The fascinating electronic and optoelectronic properties of free-standing graphene has led to the exploration of alternative two-dimensional materials that can be easily integrated with current generation of electronic technologies. In contrast to 2D oxide and dichalcogenides, elemental 2D analogues of graphene, which include monolayer silicon (silicene), are fast emerging as promising alternatives, with predictions of high degree of integration with existing technologies. This article reviews this emerging class of 2D elemental materials - silicene, germanene, stanene, and phosphorene--with emphasis on fundamental properties and synthesis techniques. The need for further investigations to establish controlled synthesis techniques and the viability of such elemental 2D materials is highlighted. Future prospects harnessing the ability to manipulate the electronic structure of these materials for nano- and opto-electronic applications are identified.

18.
Nanoscale ; 6(24): 15029-36, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25367432

ABSTRACT

Quasi two-dimensional (Q2D) semiconducting metal oxides with enhanced charge carrier mobility hold tremendous promise for nano-electronics, photonics, catalysis, nano-sensors and electrochromic applications. In addition to graphene and metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te), 2D sub-stoichiometric WO(3-x) is gaining importance as a promising semiconductor material for field-effect-transistor (FET) based devices. A combination of high permittivity, suppression of the Coulomb effects, and their stratified structure enhances the carrier mobility in such a material. Additionally, the sub-stoichiometry of this semiconductor oxide allows the reduction of the bandgap and increase of the free charge carriers at the same time. Here, we report for the first time H(+) intercalated WO(3) FETs, made of Q2D nano-flakes, with enhanced charge-carrier mobility exceeding 319 cm(2) V(-1) s(-1) comparable with the charge-carrier mobility of Q2D dichalcogenides MoS(2) and WSe(2). Analyses indicate that the enhanced electrical properties of the sub-stoichiometric WO(3-x) depend on the oxygen vacancies in the intercalated nano-flakes. These findings confirmed that Q2D sub-stoichiometric WO(3-x) is a promising material for various functional FET devices.

19.
ACS Nano ; 7(11): 9753-60, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24180694

ABSTRACT

Electrical-based biosensing platforms offer ease of fabrication and simple sensing solutions. Recently, two-dimensional (2D) semiconductors have been proven to be excellent for the fabrication of field effect transistors (FETs) due to their large transconductance, which can be efficiently used for developing sensitive bioplatforms. We present a 2D molybdenum trioxide (MoO3) FET based biosensing platform, using bovine serum albumin as a model protein. The conduction channel is a nanostructured film made of 2D α-MoO3 nanoflakes, with the majority of nanoflake thicknesses being equal to or less than 2.8 nm. The response time is impressively low (less than 10 s), which is due to the high permittivity of the 2D α-MoO3 nanoflakes. The system offers a competitive solution for future biosensing applications.


Subject(s)
Biosensing Techniques , Molybdenum/chemistry , Nanostructures , Oxides/chemistry , Semiconductors , Animals , Cattle , Materials Testing , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Serum Albumin, Bovine/chemistry , Spectrum Analysis, Raman , Surface Properties , Transistors, Electronic
20.
ACS Nano ; 7(11): 10083-93, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24148149

ABSTRACT

Two-dimensional (2D) transition metal dichalcogenide semiconductors offer unique electronic and optical properties, which are significantly different from their bulk counterparts. It is known that the electronic structure of 2D MoS2, which is the most popular member of the family, depends on the number of layers. Its electronic structure alters dramatically at near atomically thin morphologies, producing strong photoluminescence (PL). Developing processes for controlling the 2D MoS2 PL is essential to efficiently harness many of its optical capabilities. So far, it has been shown that this PL can be electrically or mechanically gated. Here, we introduce an electrochemical approach to actively control the PL of liquid-phase-exfoliated 2D MoS2 nanoflakes by manipulating the amount of intercalated ions including Li(+), Na(+), and K(+) into and out of the 2D crystal structure. These ions are selected as they are crucial components in many bioprocesses. We show that this controlled intercalation allows for large PL modulations. The introduced electrochemically controlled PL will find significant applications in future chemical and bio-optical sensors as well as optical modulators/switches.


Subject(s)
Electrochemistry/methods , Molybdenum/chemistry , Nanostructures/chemistry , Biosensing Techniques , Crystallization , Disulfides/chemistry , Electronics , Ions , Luminescence , Materials Testing , Optics and Photonics , Particle Size , Semiconductors , Software , Spectrum Analysis, Raman , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...