Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 659: 124267, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38797251

ABSTRACT

In this study, Cannabidiol crystals (CBD) were used as a BCS class II model drug to generate a novel therapeutic deep eutectic solvent (THEDES) with easy preparation using caprylic acid (CA). The hydrogen bonding interaction was confirmed by different techniques such as FT-IR and NMR, resulting in a hydrophobic system suitable for liquid formulations. The CBD-based THEDES, combined with a specific mixture of surfactants and co-surfactants, successfully formed a self-emulsifying drug delivery system (SEDDS) that generated uniform nano-sized droplets once dispersed in water. Hence, the THEDES showed compatibility with the self-emulsifying approach, offering an alternative method to load drugs at their therapeutic dosage. Physical stability concerns regarding the unconventional oily phase were addressed through stress tests using multiple and dynamic light scattering, demonstrating the robustness of the system. In addition, the formulated SEDDS proved effective in protecting CBD from the harsh acidic gastric environment for up to 2 h at pH 1.2. Furthermore, in vitro studies have confirmed the safety of the formulation and the ability of CBD to permeate Caco-2 cells when formulated. This investigation highlights the potential incorporation of THEDES in lipid-based formulations like SEDDS, expanding the avenues for innovative oral drug delivery approaches.


Subject(s)
Cannabidiol , Caprylates , Drug Delivery Systems , Emulsions , Solvents , Caco-2 Cells , Humans , Solvents/chemistry , Drug Delivery Systems/methods , Cannabidiol/chemistry , Cannabidiol/administration & dosage , Caprylates/chemistry , Surface-Active Agents/chemistry , Hydrophobic and Hydrophilic Interactions , Drug Stability , Chemistry, Pharmaceutical/methods , Emulsifying Agents/chemistry
2.
Pharmaceutics ; 16(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38399331

ABSTRACT

Cataract surgery interventions are constantly increasing, particularly among adult and elderly patients. This type of surgery can lead to inflammatory states of the ocular anterior segment (AS), usually healed via postoperative treatment with dexamethasone (DEX)-containing eye drops. The application of eye drops is challenging due to the high number of daily administrations. In this study, mucoadhesive nanoparticles (NPs) were formulated to improve the residence time of DEX on the corneal mucosa, enhancing the drug's solubility and bioavailability. The NPs were generated using an ionotropic gelation technique, exploiting the interaction between the cationic group of chitosan (CS) and the anionic group of sulfobutylether-ß-cyclodextrin (SBE-ß-CD). The formation of the inclusion complex and its stoichiometry were studied through phase solubility studies, Job's plot method, and Bi-directional transport studies on MDCKII-MDR1. The obtained NPs showed good chemical and physical characteristics suitable for drug loading and subsequent testing on animal mucosa. The DEX-loaded CS/SBE-ß-CD NPs exhibited a prolonged residence time on animal mucosa and demonstrated enhanced drug permeability through the corneal membrane, showing a sustained release profile. The developed NPs posed no irritation or toxicity concerns upon local administration, making them an optimal and innovative drug delivery system for inflammatory AS diseases treatment.

3.
Int J Pharm ; 647: 123553, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37884215

ABSTRACT

The aim of this work was to develop a new class of deep eutectic solvent (DES) composed of a complexation agent, namely hydroxy-propyl-ß-cyclodextrin (HPßCD), to exploit a synergic solubilization-enhancing approach. For this purpose, cyclodextrin-based supramolecular DES (CycloDES) were physical-chemical characterized and loaded with three different BCS class II model drugs, specifically Cannabidiol, Indomethacin, and Dexamethasone, evaluating the influence of different factors on the observed solubility and permeation compared with the only HPßCD/drug complexation. Hence, CycloDESs were presented as a possible vehicle for drugs and represent a novel potential approach for solving BCS class II and IV solubility issues, demonstrating at least a 100-fold improvement in the investigated drug solubilities. Furthermore, CycloDESs demonstrated a significantly improved resistance to dilution preserving a high percentage of drug in solution (i.e. 93% for Indomethacin) when water is added to the DES if compared with a glucose-choline chloride DES, used as a standard. This evidence guarantees the solubility-enhancing effect useful for the delivery of BCS class II and IV drugs converting solid raw material to advantageous liquid vehicles bypassing the rate-determining dissolution step.


Subject(s)
Cyclodextrins , Pharmaceutical Preparations/chemistry , Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin , Deep Eutectic Solvents , Solubility , Indomethacin
SELECTION OF CITATIONS
SEARCH DETAIL
...