Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Hyperthermia ; 39(1): 1283-1293, 2022.
Article in English | MEDLINE | ID: mdl-36162814

ABSTRACT

BACKGROUND: In stereotactic radiosurgery, isodose lines must be considered to determine how surrounding tissue is affected. In thermal ablative therapy, such as laser interstitial thermal therapy (LITT), transcranial MR-guided focused ultrasound (tcMRgFUS), and needle-based therapeutic ultrasound (NBTU), how the surrounding area is affected has not been well studied. OBJECTIVE: We aimed to quantify the transition zone surrounding the ablation core created by magnetic resonance-guided robotically-assisted (MRgRA) delivery of NBTU using multi-slice volumetric 2-D magnetic resonance thermal imaging (MRTI) and subsequent characterization of the resultant tissue damage using histopathologic analysis. METHODS: Four swine underwent MRgRA NBTU using varying duration and wattage for treatment delivery. Serial MRI images were obtained, and the most representative were overlaid with isodose lines and compared to brain tissue acquired postmortem which underwent histopathologic analysis. These results were also compared to predicted volumes using a finite element analysis model. Contralateral brain tissue was used for control data. RESULTS: Intraoperative MRTI thermal isodose contours were characterized and comprehensively mapped to post-operative MRI images and qualitatively compared with histological tissue sections postmortem. NBTU 360° ablations induced smaller lesion volumes (33.19 mm3; 120 s, 3 W; 30.05 mm3, 180 s, 4 W) versus 180° ablations (77.20 mm3, 120 s, 3 W; 109.29 mm3; 180 s; 4 W). MRTI/MRI overlay demonstrated the lesion within the proximal isodose lines. The ablation-zone was characterized by dense macrophage infiltration and glial/neuronal loss as demonstrated by glial fibrillary acidic protein (GFAP) and neurofilament (NF) absence and avid CD163 staining. The transition-zone between lesion and normal brain demonstrated decreased macrophage infiltration and measured ∼345 microns (n - 3). We did not detect overt hemorrhages or signs of edema in the adjacent spared tissue. CONCLUSION: We successfully performed MRgRA NBTU ablation in swine and demonstrated minimal histologic changes extended past the ablation-zone. The lesion was characterized by macrophage infiltration and glial/neuronal loss which decreased through the transition-zone.


Subject(s)
Brain , Ultrasonic Therapy , Animals , Brain/diagnostic imaging , Brain/surgery , Glial Fibrillary Acidic Protein , Liver , Magnetic Resonance Imaging/methods , Swine
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4687-4693, 2021 11.
Article in English | MEDLINE | ID: mdl-34892259

ABSTRACT

Lower limb exoskeletons have complex dynamics that mimic human motion. They need to be able to replicate lower limb motion such as walking. The trajectory of the exoskeleton joints and the control signal generated are essential to the system's operation. Current learning from demonstration methods has only been combined with linear quadratic regulators; this limits the applicability of processes since most robotic systems have non-linear dynamics. The Asynchronous Multi-Body Framework simulates the dynamics and allows for real-time control. Eleven gait cycle demonstrations were recorded from volunteers using motion capture and encoded using Task Parameterized Gaussian mixture models. An iterative linear quadratic regulator is used to find an optimal control signal to drive the exoskeleton joints through the desired trajectories. A PD controller is added as a feed-forward control component for unmodeled dynamics and optimized using the Bayesian Information Criterion. We show how the trajectory is learned, and the control signal is optimized by reducing the required bins for learning. The framework presented produces optimal control signals to allow the exoskeleton's legs to follow human motion demonstrations.


Subject(s)
Exoskeleton Device , Bayes Theorem , Biomechanical Phenomena , Humans , Lower Extremity , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...