Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 26(9): 1575-1583, 2023 09.
Article in English | MEDLINE | ID: mdl-37563295

ABSTRACT

During decision-making, neurons in the orbitofrontal cortex (OFC) sequentially represent the value of each option in turn, but it is unclear how these dynamics are translated into a choice response. One brain region that may be implicated in this process is the anterior cingulate cortex (ACC), which strongly connects with OFC and contains many neurons that encode the choice response. We investigated how OFC value signals interacted with ACC neurons encoding the choice response by performing simultaneous high-channel count recordings from the two areas in nonhuman primates. ACC neurons encoding the choice response steadily increased their firing rate throughout the decision-making process, peaking shortly before the time of the choice response. Furthermore, the value dynamics in OFC affected ACC ramping-when OFC represented the more valuable option, ACC ramping accelerated. Because OFC tended to represent the more valuable option more frequently and for a longer duration, this interaction could explain how ACC selects the more valuable response.


Subject(s)
Decision Making , Prefrontal Cortex , Animals , Decision Making/physiology , Prefrontal Cortex/physiology , Gyrus Cinguli/physiology , Neurons/physiology , Choice Behavior/physiology , Reward
2.
Neuron ; 110(13): 2170-2182.e4, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35525242

ABSTRACT

We make complex decisions using both fast judgments and slower, more deliberative reasoning. For example, during value-based decision-making, animals make rapid value-guided orienting eye movements after stimulus presentation that bias the upcoming decision. The neural mechanisms underlying these processes remain unclear. To address this, we recorded from the caudate nucleus and orbitofrontal cortex while animals made value-guided decisions. Using population-level decoding, we found a rapid, phasic signal in caudate that predicted the choice response and closely aligned with animals' initial orienting eye movements. In contrast, the dynamics in orbitofrontal cortex were more consistent with a deliberative system serially representing the value of each available option. The phasic caudate value signal and the deliberative orbitofrontal value signal were largely independent from each other, consistent with value-guided orienting and value-guided decision-making being independent processes.


Subject(s)
Caudate Nucleus/physiology , Cerebellar Cortex/physiology , Decision Making/physiology , Eye Movements/physiology , Prefrontal Cortex , Animals , Prefrontal Cortex/physiology
3.
Int IEEE EMBS Conf Neural Eng ; 2019: 195-198, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31367267

ABSTRACT

Acute neurophysiology in the behaving primate typically relies on traditional manufacturing approaches for the instrumentation necessary for recording. For example, our previous approach consisted of distributing single microelectrodes in a fixed plane situated over a circular patch of frontal cortex using conventionally-milled recording grids. With the advent of robust, multisite linear probes, and the introduction of commercially-available, high-resolution rapid prototyping systems, we have been able to improve upon traditional approaches. Here, we report our methodology for producing flexible, MR-informed recording platforms that allow us to precisely target brain structures of interest, including those that would be unreachable using previous methods. We have increased our single-session recording yields by an order of magnitude and recorded neural activity from widely-distributed regions using only a single recording chamber. This approach both speeds data collection, reduces the damage done to neural tissue over the course of a single experiment, and reduces the number of surgical procedures experienced by the animal.

4.
Front Hum Neurosci ; 10: 665, 2016.
Article in English | MEDLINE | ID: mdl-28082886

ABSTRACT

In the cognitive domain, enormous variation in methodological approach prompts questions about the generalizability of behavioral findings obtained from studies of transcranial direct current stimulation (tDCS). To determine the impact of common variations in approach, we systematically manipulated two key stimulation parameters-current polarity and intensity-and assessed their impact on a task of inhibitory control (the Eriksen Flanker). Ninety participants were randomly assigned to one of nine experimental groups: three stimulation conditions (anode, sham, cathode) crossed with three intensity levels (1.0, 1.5, 2.0 mA). As participants performed the Flanker task, stimulation was applied over left dorsolateral prefrontal cortex (DLPFC; electrode montage: F3-RSO). The behavioral impact of these manipulations was examined using mixed effects linear regression. Results indicate a significant effect of stimulation condition (current polarity) on the magnitude of the interference effect during the Flanker; however, this effect was specific to the comparison between anodal and sham stimulation. Inhibitory control was therefore improved by anodal stimulation over the DLPFC. In the present experimental context, no reliable effect of stimulation intensity was observed, and we found no evidence that inhibitory control was impeded by cathodal stimulation. Continued exploration of the stimulation parameter space, particularly with more robustly powered sample sizes, is essential to facilitating cross-study comparison and ultimately working toward a reliable model of tDCS effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...