Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Prenat Diagn ; 43(13): 1638-1649, 2023 12.
Article in English | MEDLINE | ID: mdl-37955580

ABSTRACT

Lysosomal storage disorders (LSDs) are a group of monogenic condition, with many characterized by an enzyme deficiency leading to the accumulation of an undegraded substrate within the lysosomes. For those LSDs, postnatal enzyme replacement therapy (ERT) represents the standard of care, but this treatment has limitations when administered only postnatally because, at that point, prenatal disease sequelae may be irreversible. Furthermore, most forms of ERT, specifically those administered systemically, are currently unable to access certain tissues, such as the central nervous system (CNS), and furthermore, may initiate an immune response. In utero enzyme replacement therapy (IUERT) is a novel approach to address these challenges evaluated in a first-in-human clinical trial for IUERT in LSDs (NCT04532047). IUERT has numerous advantages: in-utero intervention may prevent early pathology; the CNS can be accessed before the blood-brain barrier forms; and the unique fetal immune system enables exposure to new proteins with the potential to prevent an immune response and may induce sustained tolerance. However, there are challenges and limitations for any fetal procedure that involves two patients. This article reviews the current state of IUERT for LSDs, including its advantages, limitations, and potential future directions for definitive therapies.


Subject(s)
Enzyme Replacement Therapy , Lysosomal Storage Diseases , Pregnancy , Female , Humans , Enzyme Replacement Therapy/methods , Lysosomal Storage Diseases/therapy , Lysosomal Storage Diseases/complications , Central Nervous System , Lysosomes
2.
Mol Genet Metab ; 140(1-2): 107715, 2023.
Article in English | MEDLINE | ID: mdl-37907381

ABSTRACT

Accurate determination of the clinical significance of genetic variants is critical to the integration of genomics in medicine. To facilitate this process, the NIH-funded Clinical Genome Resource (ClinGen) has assembled Variant Curation Expert Panels (VCEPs), groups of experts and biocurators which provide gene- and disease- specifications to the American College of Medical Genetics & Genomics and Association for Molecular Pathology's (ACMG/AMP) variation classification guidelines. With the goal of classifying the clinical significance of GAA variants in Pompe disease (Glycogen storage disease, type II), the ClinGen Lysosomal Diseases (LD) VCEP has specified the ACMG/AMP criteria for GAA. Variant classification can play an important role in confirming the diagnosis of Pompe disease as well as in the identification of carriers. Furthermore, since the inclusion of Pompe disease on the Recommended Uniform Screening Panel (RUSP) for newborns in the USA in 2015, the addition of molecular genetic testing has become an important component in the interpretation of newborn screening results, particularly for asymptomatic individuals. To date, the LD VCEP has submitted classifications and supporting data on 243 GAA variants to public databases, specifically ClinVar and the ClinGen Evidence Repository. Here, we describe the ACMG/AMP criteria specification process for GAA, an update of the GAA-specific variant classification guidelines, and comparison of the ClinGen LD VCEP's GAA variant classifications with variant classifications submitted to ClinVar. The LD VCEP has added to the publicly available knowledge on the pathogenicity of variants in GAA by increasing the number of expert-curated GAA variants present in ClinVar, and aids in resolving conflicting classifications and variants of uncertain clinical significance.


Subject(s)
Genetic Variation , Glycogen Storage Disease Type II , Infant, Newborn , Humans , United States , Genetic Testing/methods , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/genetics , Genome, Human , Genomics/methods
3.
JIMD Rep ; 64(5): 393-400, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37701327

ABSTRACT

Late-onset Pompe disease (LOPD) is a multisystem disorder with significant myopathy. The standard treatment is enzyme replacement therapy (ERT), a therapy that is lifesaving, yet with limitations. Clinical trials have emerged for other potential treatment options, including adeno-associated virus (AAV) gene therapy. We present clinical parameters and AAV antibody titers for 19 individuals with LOPD undergoing screening for a Phase I clinical trial with an AAV serotype 8 vector targeting hepatic transduction (AAV2/8-LSPhGAA). Reported clinical parameters included GAA genotype, assessments of muscle function, upright and supine spirometry, anti-recombinant human GAA antibody titers, and biomarkers. Variability in measured parameters and phenotypes of screened individuals was evident. Eligibility criteria required that all participants have six-minute walk test (6MWT) and upright forced vital capacity (FVC) below the expected range for normal individuals, and were stably treated with ERT for >2 years. All participants had Pompe disease diagnosed by enzyme deficiency, and all had the common c.-32-13T>G LOPD pathogenic variant. Screening identified 14 patients (74%) with no or minimal detectable neutralizing antibodies against AAV8 (titer ≤1:5). 6MWT distance varied significantly (percent of expected distance ranging from 24% to 91% with an average of 60 and standard deviation of 21). Upright FVC percent predicted ranged from 35% predicted to 91% predicted with an average of 66 and standard deviation of 18. None of the participants had significantly elevated alanine transaminase, which has been associated with LOPD and could complicate screening for hepatitis related to AAV gene therapy. We review the parameters considered in screening for eligibility for a clinical trial of AAV8 vector-mediated gene therapy.

4.
Mol Genet Metab ; 138(3): 107525, 2023 03.
Article in English | MEDLINE | ID: mdl-36796138

ABSTRACT

Glycogen storage disease type IV (GSD IV) is an ultra-rare autosomal recessive disorder caused by pathogenic variants in GBE1 which results in reduced or deficient glycogen branching enzyme activity. Consequently, glycogen synthesis is impaired and leads to accumulation of poorly branched glycogen known as polyglucosan. GSD IV is characterized by a remarkable degree of phenotypic heterogeneity with presentations in utero, during infancy, early childhood, adolescence, or middle to late adulthood. The clinical continuum encompasses hepatic, cardiac, muscular, and neurologic manifestations that range in severity. The adult-onset form of GSD IV, referred to as adult polyglucosan body disease (APBD), is a neurodegenerative disease characterized by neurogenic bladder, spastic paraparesis, and peripheral neuropathy. There are currently no consensus guidelines for the diagnosis and management of these patients, resulting in high rates of misdiagnosis, delayed diagnosis, and lack of standardized clinical care. To address this, a group of experts from the United States developed a set of recommendations for the diagnosis and management of all clinical phenotypes of GSD IV, including APBD, to support clinicians and caregivers who provide long-term care for individuals with GSD IV. The educational resource includes practical steps to confirm a GSD IV diagnosis and best practices for medical management, including (a) imaging of the liver, heart, skeletal muscle, brain, and spine, (b) functional and neuromusculoskeletal assessments, (c) laboratory investigations, (d) liver and heart transplantation, and (e) long-term follow-up care. Remaining knowledge gaps are detailed to emphasize areas for improvement and future research.


Subject(s)
Glycogen Storage Disease Type IV , Glycogen Storage Disease , Neurodegenerative Diseases , Child, Preschool , Humans , Glycogen Storage Disease Type IV/diagnosis , Glycogen Storage Disease Type IV/genetics , Glycogen Storage Disease Type IV/therapy , Glycogen Storage Disease/diagnosis , Glycogen Storage Disease/genetics , Glycogen Storage Disease/therapy , Glycogen
5.
Mol Ther ; 31(7): 1994-2004, 2023 07 05.
Article in English | MEDLINE | ID: mdl-36805083

ABSTRACT

Gene therapy with an adeno-associated virus serotype 8 (AAV8) vector (AAV8-LSPhGAA) could eliminate the need for enzyme replacement therapy (ERT) by creating a liver depot for acid α-glucosidase (GAA) production. We report initial safety and bioactivity of the first dose (1.6 × 1012 vector genomes/kg) cohort (n = 3) in a 52-week open-label, single-dose, dose-escalation study (NCT03533673) in patients with late-onset Pompe disease (LOPD). Subjects discontinued biweekly ERT after week 26 based on the detection of elevated serum GAA activity and the absence of clinically significant declines per protocol. Prednisone (60 mg/day) was administered as immunoprophylaxis through week 4, followed by an 11-week taper. All subjects demonstrated sustained serum GAA activities from 101% to 235% of baseline trough activity 2 weeks following the preceding ERT dose. There were no treatment-related serious adverse events. No subject had anti-capsid T cell responses that decreased transgene expression. Muscle biopsy at week 24 revealed unchanged muscle glycogen content in two of three subjects. At week 52, muscle GAA activity for the cohort was significantly increased (p < 0.05). Overall, these initial data support the safety and bioactivity of AAV8-LSPhGAA, the safety of withdrawing ERT, successful immunoprophylaxis, and justify continued clinical development of AAV8-LSPhGAA therapy in Pompe disease.


Subject(s)
Glycogen Storage Disease Type II , Humans , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism , Antibodies/genetics , Enzyme Replacement Therapy/methods , Genetic Therapy/methods , Glycogen Storage Disease Type II/therapy , Glycogen Storage Disease Type II/drug therapy , Liver/metabolism
6.
N Engl J Med ; 387(23): 2150-2158, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36351280

ABSTRACT

Patients with early-onset lysosomal storage diseases are ideal candidates for prenatal therapy because organ damage starts in utero. We report the safety and efficacy results of in utero enzyme-replacement therapy (ERT) in a fetus with CRIM (cross-reactive immunologic material)-negative infantile-onset Pompe's disease. The family history was positive for infantile-onset Pompe's disease with cardiomyopathy in two previously affected deceased siblings. After receiving in utero ERT and standard postnatal therapy, the current patient had normal cardiac and age-appropriate motor function postnatally, was meeting developmental milestones, had normal biomarker levels, and was feeding and growing well at 13 months of age.


Subject(s)
Glycogen Storage Disease Type II , Humans , Infant , Glycogen Storage Disease Type II/drug therapy
7.
Front Genet ; 13: 1001154, 2022.
Article in English | MEDLINE | ID: mdl-36246652

ABSTRACT

Purpose: The addition of Pompe disease (Glycogen Storage Disease Type II) to the Recommended Uniform Screening Panel in the United States has led to an increase in the number of variants of uncertain significance (VUS) and novel variants identified in the GAA gene. This presents a diagnostic challenge, especially in the setting of late-onset Pompe disease when symptoms are rarely apparent at birth. There is an unmet need for validated functional studies to aid in classification of GAA variants. Methods: We developed an in vitro mammalian cell expression and functional analysis system based on guidelines established by the Clinical Genome Resource (ClinGen) Sequence Variant Interpretation Working Group for PS3/BS3. We validated the assay with 12 control variants and subsequently analyzed eight VUS or novel variants in GAA identified in patients with a positive newborn screen for Pompe disease without phenotypic evidence of infantile-onset disease. Results: The control variants were analyzed in our expression system and an activity range was established. The pathogenic controls had GAA activity between 0% and 11% of normal. The benign or likely benign controls had an activity range of 54%-100%. The pseudodeficiency variant had activity of 17%. These ranges were then applied to the variants selected for functional studies. Using the threshold of <11%, we were able to apply PS3_ supporting to classify two variants as likely pathogenic (c.316C > T and c.1103G > A) and provide further evidence to support the classification of likely pathogenic for two variants (c.1721T > C and c.1048G > A). One variant (c.1123C > T) was able to be reclassified based on other supporting evidence. We were unable to reclassify three variants (c.664G > A, c.2450A > G, and c.1378G > A) due to insufficient or conflicting evidence. Conclusion: We investigated eight GAA variants as proof of concept using our validated and reproducible in vitro expression and functional analysis system. While additional work is needed to further refine our system with additional controls and different variant types in order to apply the PS3/BS3 criteria at a higher level, this tool can be utilized for variant classification to meet the growing need for novel GAA variant classification in the era of newborn screening for Pompe disease.

8.
Mol Genet Metab Rep ; 31: 100856, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35782603

ABSTRACT

Introduction: Biotinidase synthesis is needed to recycle biotin for essential metabolic reactions. Biotinidase activity is lower than normal levels in advanced liver disease but is higher in hepatic glycogen storage disorders (GSDs), however the cause of this association remains unclear. Methods: In this study, biotinidase activity was measured in plasma samples from 45 individuals with hepatic GSDs; GSDI (a, b; n = 25) and GSD III (a, b; n = 20), complemented by a chart review to associate biotinidase activity levels with clinical laboratory and imaging findings known to be implicated in these GSDs. Results: Our findings showed variation in biotinidase activity levels among subjects with GSD I and III; biotinidase activity correlated positively with hypertriglyceridemia in subjects with GSD I (r = 0.47, P = 0.036) and GSD III (r = 0.58, P = 0.014), and correlated negatively with age (r = -0.50, P = 0.03) in patients with GSD III. Additionally, biotinidase activity was reduced, albeit within the normal range in subjects with evidence of fibrosis/cirrhosis, as compared to subjects with hepatomegaly with or without steatosis (P = 0.002). Discussions: These findings suggest that abnormal lipid metabolism in GSD I and III and progressive liver disease in GSD III may influence biotinidase activity levels. We suggest that a prospective, multi-center, longitudinal study designed to assess the significance of monitoring biotinidase activity in a larger cohort with hepatic GSDs is warranted to confirm this observation. Take-home message: Altered lipid metabolism and advancing liver fibrosis/cirrhosis may influence biotinidase activity levels in patients with hepatic glycogen storage disease. Thus, longitudinal monitoring of biotinidase activity, when combined with clinical and other biochemical findings may be informative.

10.
Mol Genet Metab ; 133(3): 269-276, 2021 07.
Article in English | MEDLINE | ID: mdl-34083142

ABSTRACT

INTRODUCTION: Liver Glycogen Storage Disease IX is a rare metabolic disorder of glycogen metabolism caused by deficiency of the phosphorylase kinase enzyme (PhK). Variants in the PHKG2 gene, encoding the liver-specific catalytic γ2 subunit of PhK, are associated with a liver GSD IX subtype known as PHKG2 GSD IX or GSD IX γ2. There is emerging evidence that patients with GSD IX γ2 can develop severe and progressive liver disease, yet research regarding the disease has been minimal to date. Here we characterize the first mouse model of liver GSD IX γ2. METHODS: A Phkg2-/- mouse model was generated via targeted removal of the Phkg2 gene. Knockout (Phkg2-/-, KO) and wild type (Phkg2+/+, WT) mice up to 3 months of age were compared for morphology, Phkg2 transcription, PhK enzyme activity, glycogen content, histology, serum liver markers, and urinary glucose tetrasaccharide Glcα1-6Glcα1-4Glcα1-4Glc (Glc4). RESULTS: When compared to WT controls, KO mice demonstrated significantly decreased liver PhK enzyme activity, increased liver: body weight ratio, and increased glycogen in the liver, with no glycogen accumulation observed in the brain, quadricep, kidney, and heart. KO mice demonstrated elevated liver blood markers as well as elevated urine Glc4, a commonly used biomarker for glycogen storage disease. KO mice demonstrated features of liver structural damage. Hematoxylin & Eosin and Masson's Trichrome stained KO mice liver histology slides revealed characteristic GSD hepatocyte architectural changes and early liver fibrosis, as have been reported in liver GSD patients. DISCUSSION: This study provides the first evidence of a mouse model that recapitulates the liver-specific pathology of patients with GSD IX γ2. The model will provide the first platform for further study of disease progression in GSD IX γ2 as well as for the evaluation of novel therapeutics.


Subject(s)
Disease Models, Animal , Glycogen Storage Disease/physiopathology , Glycogen/metabolism , Liver Diseases/physiopathology , Liver/physiopathology , Mice , Phosphorylase Kinase/genetics , Animals , Female , Glycogen Storage Disease/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Phosphorylase Kinase/deficiency
11.
Neuropediatrics ; 52(6): 475-479, 2021 12.
Article in English | MEDLINE | ID: mdl-33578445

ABSTRACT

Pompe's disease occurs due to an autosomal recessive trait resulting from numerous distinctive mutations in the GAA gene. It manifests as a broad spectrum of clinical phenotypes with progressive weakness that impairs motor and respiratory functions being common for all its forms. Cardiac hypertrophy is a prominent feature of its classic infantile form. To date, the pathogenic variant c.2015G > A (p.Arg672Gln) in exon 14 of the GAA gene has been described in 10 children of different ethnic groups, with variable phenotypic presentations. This work describes three children from two unrelated families of Arab ethnicity who presented with infantile-onset Pompe's disease as a result of a c.2015G > A (p.Arg672Gln) mutation. The clinical course of the children we report was more severe than previous reports. This further emphasizes the lack of a strict genotype-phenotype correlation in regard to the unique c.2015G > A (p.R672Q) mutation that causes Pompe's disease. This information contributes to the knowledge of the phenotypic expression of the specific mutation c.2015G > A (p.Arg672Gln) that causes Pompe's disease.


Subject(s)
Glycogen Storage Disease Type II , alpha-Glucosidases , Disease Progression , Genetic Association Studies , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/metabolism , Humans , Mutation , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism
12.
Mol Genet Metab ; 130(3): 209-214, 2020 07.
Article in English | MEDLINE | ID: mdl-32418857

ABSTRACT

PURPOSE: Successful diagnosis of Fabry disease is often delayed or missed in patients, especially females, due to clinical heterogeneity and a lack of disease awareness. We present our experience testing for Fabry disease in high risk populations and discuss the relative sensitivities of α-galactosidase A (α-Gal A) enzyme activity in blood, plasma lyso-globotriaosylceramide (lyso-Gb3) biomarker, and GLA gene sequencing as diagnostic tests for Fabry disease in both males and females. METHODS: Patients with a clinical suspicion of Fabry disease were evaluated with enzyme analysis, biomarker analysis, and GLA sequencing. All three assays were performed from a single tube of EDTA blood. α-Gal A activity was determined in dried blood spots using a fluorometric assay, plasma lyso-Gb3 by UPLC-MS/MS, and GLA analysis by Sanger sequencing. RESULTS: Peripheral blood samples were received from 94 males and 200 females, of which 29% of males and 22% of females had a positive family history of Fabry disease. A likely pathogenic or pathogenic variant was identified in 87 (30%) patients (50 males, 37 females), confirming a diagnosis of Fabry disease. Of the remaining patients, 178 (61%) were determined to be unaffected based on normal enzyme activity (males) or normal lyso-Gb3 and negative sequencing results (females). A VUS was identified in 29 (10%) patients. The positive and negative predictive value of plasma lyso-Gb3 was 100% and 97% in males and 100% and 99% in females, respectively. This compares with 84% and 100% in males, and 58% and 50% in females for α-Gal A activity testing, respectively. CONCLUSIONS: Plasma lyso-Gb3 has high sensitivity and specificity for Fabry disease in males and females, and provides supportive diagnostic information when gene sequencing results are negative or inconclusive. α-Gal A activity in dried blood spots (DBS) has high sensitivity, but lower specificity for Fabry disease in males, as not all males with low α-Gal A activities were confirmed to have Fabry disease. Therefore, reflexing to gene sequencing and plasma lyso-Gb3 is useful for disease confirmation in males. For females, we found that first tier testing consisting of GLA sequencing and plasma lyso-Gb3 analysis provided the greatest sensitivity and specificity. Enzyme testing has lower sensitivity in females and is therefore less useful as a first-tier test. Enzyme analysis in females may still be helpful as a second-tier test in cases where molecular testing and plasma lyso-Gb3 analysis are uninformative and in vitro enzyme activity is low. SUMMARY: Sex-specific testing algorithms that prioritize tests with high specificity and sensitivity offer an effective means of identifying individuals with Fabry disease.


Subject(s)
Algorithms , Biomarkers/blood , Fabry Disease/diagnosis , Glycolipids/blood , Sphingolipids/blood , alpha-Galactosidase/metabolism , Fabry Disease/metabolism , Female , Humans , Infant, Newborn , Male , Mutation , Retrospective Studies , alpha-Galactosidase/genetics
13.
JAMA Netw Open ; 3(1): e1920356, 2020 01 03.
Article in English | MEDLINE | ID: mdl-32003821

ABSTRACT

Importance: X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal genetic disorder in which an accumulation of very long-chain fatty acids leads to inflammatory demyelination in the central nervous system and to adrenal cortex atrophy. In 2016, X-ALD was added to the US Recommended Uniform Screening Panel. Objective: To evaluate the performance of a single-tier newborn screening assay for X-ALD in North Carolina. Design, Setting, and Participants: This diagnostic screening study was of all newborn dried blood spot specimens received in the North Carolina State Laboratory of Public Health between January 2 and June 1, 2018, excluding specimens of insufficient quantity or quality. A total of 52 301 specimens were screened for X-ALD using negative ionization high-performance liquid chromatography tandem mass spectrometry to measure C24:0- and C26:0-lysophosphatidylcholine concentrations. Sanger sequencing of the adenosine triphosphate-binding cassette subfamily D member 1 (ABCD1) gene was performed on screen-positive specimens. Exposures: A medical and family history, newborn physical examination, sequencing of ABCD1 on dried blood spot samples, and plasma analysis of very long-chain fatty acids were obtained for all infants with screen-positive results. Main Outcomes and Measures: The prevalence of X-ALD in North Carolina and the positive predictive value and false-positive rate for the first-tier assay were determined. Results: Of 52 301 infants tested (47.8% female, 50.6% male, and 1.7% other or unknown sex), 12 received screen-positive results. Of these 12 infants, 8 were confirmed with a genetic disorder: 3 male infants with X-ALD, 3 X-ALD-heterozygous female infants, 1 female infant with a peroxisome biogenesis disorder, and 1 female infant with Aicardi-Goutières syndrome. Four infants were initially classified as having false-positives results, including 3 female infants who were deemed unaffected and 1 male infant with indeterminate results on confirmatory testing. The positive predictive value for X-ALD or other genetic disorders for the first-tier assay was 67%, with a false-positive rate of 0.0057%. Conclusions and Relevance: This newborn screening pilot study reported results on 2 lysophosphatidylcholine analytes, identifying 3 male infants with X-ALD, 3 X-ALD-heterozygous female infants, and 3 infants with other disorders associated with increased very long-chain fatty acids. These results showed successful implementation in a public health program with minimal risk to the population. The findings will support other state laboratories planning to implement newborn screening for X-ALD and related disorders.


Subject(s)
Adrenoleukodystrophy/diagnosis , Adrenoleukodystrophy/epidemiology , Lysophosphatidylcholines/blood , Neonatal Screening/methods , Female , Humans , Infant, Newborn , Male , North Carolina/epidemiology , Pilot Projects
14.
JCI Insight ; 5(4)2020 02 27.
Article in English | MEDLINE | ID: mdl-31990680

ABSTRACT

BACKGROUNDLiver disease in urea cycle disorders (UCDs) ranges from hepatomegaly and chronic hepatocellular injury to cirrhosis and end-stage liver disease. However, the prevalence and underlying mechanisms are unclear.METHODSWe estimated the prevalence of chronic hepatocellular injury in UCDs using data from a multicenter, longitudinal, natural history study. We also used ultrasound with shear wave elastography and FibroTest to evaluate liver stiffness and markers of fibrosis in individuals with argininosuccinate lyase deficiency (ASLD), a disorder with high prevalence of elevated serum alanine aminotransferase (ALT). To understand the human observations, we evaluated the hepatic phenotype of the AslNeo/Neo mouse model of ASLD.RESULTSWe demonstrate a high prevalence of elevated ALT in ASLD (37%). Hyperammonemia and use of nitrogen-scavenging agents, 2 markers of disease severity, were significantly (P < 0.001 and P = 0.001, respectively) associated with elevated ALT in ASLD. In addition, ultrasound with shear wave elastography and FibroTest revealed increased echogenicity and liver stiffness, even in individuals with ASLD and normal aminotransferases. The AslNeo/Neo mice mimic the human disorder with hepatomegaly, elevated aminotransferases, and excessive hepatic glycogen noted before death (3-5 weeks of age). This excessive hepatic glycogen is associated with impaired hepatic glycogenolysis and decreased glycogen phosphorylase and is rescued with helper-dependent adenovirus expressing Asl using a liver-specific (ApoE) promoter.CONCLUSIONOur results link urea cycle dysfunction and impaired hepatic glucose metabolism and identify a mouse model of liver disease in the setting of urea cycle dysfunction.TRIAL REGISTRATIONThis study has been registered at ClinicalTrials.gov (NCT03721367, NCT00237315).FUNDINGFunding was provided by NIH, Burroughs Wellcome Fund, NUCDF, Genzyme/ACMG Foundation, and CPRIT.


Subject(s)
Argininosuccinate Lyase/metabolism , Liver Diseases/metabolism , Liver Glycogen/metabolism , Alanine Transaminase/blood , Animals , Chronic Disease , Disease Models, Animal , Humans , Liver Diseases/complications , Liver Diseases/enzymology , Longitudinal Studies , Mice , Urea Cycle Disorders, Inborn/complications
15.
J Pediatr ; 216: 44-50.e5, 2020 01.
Article in English | MEDLINE | ID: mdl-31606152

ABSTRACT

OBJECTIVES: To evaluate the clinical and molecular spectrum, and factors affecting clinical outcome of patients in India diagnosed with infantile-onset Pompe disease (IOPD). STUDY DESIGN: In this multicenter, cross-sectional study, we evaluated the records of 77 patients with IOPD to analyze their clinical course, outcomes, and factors influencing the outcomes. RESULTS: Of the 77 patients with IOPD, phenotype data were available in 59; 46 (78%) had the classic phenotype. Overall, 58 of 77 (75%) and 19 of 77 (25%) patients were symptomatic before and after age 6 months, respectively. Alpha-glucosidase gene variant analysis available for 48 patients (96 alleles) showed missense variants in 49 alleles. Cross-reactive immunologic material (CRIM) status could be determined or predicted in 44 of 48 patients. In total, 32 of 44 patients (72%) were CRIM-positive, and 12 of 44 patients (27%) were CRIM-negative. Thirty-nine cases received enzyme-replacement therapy (ERT), alglucosidase alfa, and 38 patients never received ERT. Median age at initiation of ERT was 6.5 months. Response to ERT was better in babies who had CRIM-positive, non-classic IOPD. CONCLUSIONS: This study highlights the clinical spectrum of IOPD in India and provides an insight on various factors, such as undernutrition, feeding difficulties, and recurrent respiratory infection, as possible factors influencing clinical outcomes in these patients. The study also reiterates the importance of raising awareness among clinicians about the need for early diagnosis and timely treatment of IOPD.


Subject(s)
Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/physiopathology , Age of Onset , Cross-Sectional Studies , Female , Glycogen Storage Disease Type II/mortality , Glycogen Storage Disease Type II/therapy , Humans , India/epidemiology , Infant , Infant, Newborn , Male , Phenotype , Retrospective Studies , Treatment Outcome
16.
Mol Genet Metab ; 129(2): 67-72, 2020 02.
Article in English | MEDLINE | ID: mdl-31839530

ABSTRACT

This 24-week, Phase I/II, double-blind, randomized, placebo-controlled study investigated the safety and efficacy of extended-release albuterol in late-onset Pompe disease stably treated with enzyme replacement therapy at the standard dose for 4.9 (1.0-9.4) years and with no contraindications to intake of albuterol. Twelve of 13 participants completed the study. No serious adverse events were related to albuterol, and transient minor drug-related adverse events included muscle spasms and tremors. For the albuterol group, forced vital capacity in the supine position increased by 10% (p < .005), and forced expiratory volume in one second increased by 8% (p < .05); the six-minute walk test increased 25 m (p < .05; excluding one participant unable to complete muscle function testing); the Gross Motor Function Measure increased by 8% (p < .005) with the greatest increases in the Standing (18%; p < .05) and Walking, Running, and Jumping (11%; p < .005) subtests. No significant improvements would be expected in patients with late-onset Pompe disease who were stably treated with enzyme replacement therapy. The placebo group demonstrated no significant increases in performance on any measure. These data support a potential benefit of extended-release albuterol as adjunctive therapy in carefully selected patients with late-onset Pompe disease based on ability to take albuterol on enzyme replacement therapy (NCT01885936).


Subject(s)
Albuterol/administration & dosage , Glycogen Storage Disease Type II/drug therapy , Late Onset Disorders/drug therapy , Muscle, Skeletal/drug effects , Adult , Double-Blind Method , Enzyme Replacement Therapy , Female , Forced Expiratory Volume , Humans , Male , Middle Aged , Muscle, Skeletal/physiology , Treatment Outcome , Vital Capacity , Walk Test
17.
Pract Lab Med ; 18: e00141, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31720353

ABSTRACT

BACKGROUND: Decreased galactocerebrosidase (GALC) enzyme activity is causative for Krabbe disease, a lysosomal storage disorder with devastating neurodegenerative consequences. Quantitative fluorimetric assays for GALC activity in isolated blood and skin cells have been described; however, no such assay has been described using dried blood spot (DBS) specimens. METHODS: GALC enzyme activity was measured quantitatively using fluorescence from a novel glycosidic substrate: carboxy derived from 6-hexadecanoylamino-4-methylumbelliferone. GALC activity was demonstrated on newborn DBS specimens, known Krabbe disease patient specimens, proficiency testing and quality control samples. RESULTS: We present data on characterization of the novel substrate and assay, including pH optimization and enzyme kinetics using a fluorimetric profile. Single and multi-day precision analyses revealed tight analytical measurements with %CV ranging from 5.2% to 14.1%. GALC enzyme activity was linear over the range of 0.31 - 12.04 µmol/l/h with a limit of detection of 0.066 µmol/l/h. Our results with this assay show a clear discrimination between GALC activities in samples from Krabbe disease patients versus presumed normal newborn samples. CONCLUSIONS: A fluorimetric assay for GALC enzyme activity measurement on dried blood spot specimens is feasible. Improvements to the assay including novel substrate design, increased substrate concentration and removal of sodium chloride maximize the specificity of the assay and minimize interference from ß-galactosidase.

18.
Ann Transl Med ; 7(13): 276, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31392188

ABSTRACT

BACKGROUND: Pompe disease is a lysosomal storage disorder caused by the deficiency of enzyme acid alpha-glucosidase (GAA) which results in accumulation of glycogen, particularly in the skeletal, cardiac, and smooth muscles. The late-onset form with symptoms presenting in childhood through adulthood, is characterized by proximal muscle weakness, respiratory insufficiency, and unlike the infantile-onset form often with no cardiac involvement. METHODS: We report our experience with 18 adult patients (14 males/4 females) with Pompe disease, several of whom had unique findings and novel pathogenic variants. Patients ranged in ages from 22-74 years (mean 53.7 years) and were diagnosed at an age range of 11-65 years (mean 43.6 years), often after a history of progressive muscle disease of several years' duration. All 18 patients were treated with alglucosidase alfa (Lumizyme) and their response to treatment was monitored by measurements of their pulmonary function and muscle weakness, six-minute walk test (6MWT), and other functional studies. RESULTS: Genetic sequencing revealed that 16 out of 18 individuals had the common c.-32-13T>G splicing variant, and six patients, including two sibships had four novel pathogenic variants: c.1594G>A, c.2655_2656delCG, c.1951-1952delGGinsT, and c.1134C>G. A male with the c.1594G>A variant developed an intracerebral aneurysm at the age of 43 years treated with surgery. Two siblings with the c.2655_2656delCG developed very high antibody titers, one of whom developed a severe infusion reaction. Other clinical features included BiPAP requirement in twelve, tinnitus in seven, scoliosis in five, cardiomyopathy in three, one individual was diagnosed with a cerebral aneurysm who underwent successful Penumbra coil placement, and another individual was diagnosed with both Graves' disease and testicular cancer. CONCLUSIONS: Our study illustrates significant variability in the range of clinical features, and the variable clinical response to enzyme replacement therapy. It also alerts us to the importance of careful monitoring and early management of complications. Possible genotype-phenotype associations with the novel mutations identified may emerge with larger studies.

20.
Genet Med ; 21(12): 2686-2694, 2019 12.
Article in English | MEDLINE | ID: mdl-31263214

ABSTRACT

PURPOSE: In glycogen storage disease type III (GSD III), liver aminotransferases tend to normalize with age giving an impression that hepatic manifestations improve with age. However, despite dietary treatment, long-term liver complications emerge. We present a GSD III liver natural history study in children to better understand changes in hepatic parameters with age. METHODS: We reviewed clinical, biochemical, histological, and radiological data in pediatric patients with GSD III, and performed a literature review of GSD III hepatic findings. RESULTS: Twenty-six patients (median age 12.5 years, range 2-22) with GSD IIIa (n = 23) and IIIb (n = 3) were enrolled in the study. Six of seven pediatric patients showed severe fibrosis on liver biopsy (median [range] age: 1.25 [0.75-7] years). Markers of liver injury (aminotransferases), dysfunction (cholesterol, triglycerides), and glycogen storage (glucose tetrasaccharide, Glc4) were elevated at an early age, and decreased significantly thereafter (p < 0.001). Creatine phosphokinase was also elevated with no significant correlation with age (p = 0.4). CONCLUSION: Liver fibrosis can occur at an early age, and may explain the decrease in aminotransferases and Glc4 with age. Our data outlines the need for systematic follow-up and specific biochemical and radiological tools to monitor the silent course of the liver disease process.


Subject(s)
Glycogen Storage Disease Type III/pathology , Liver Cirrhosis/pathology , Adolescent , Biomarkers , Child , Child, Preschool , Cholesterol/analysis , Cholesterol/metabolism , Female , Glycogen , Glycogen Storage Disease/pathology , Glycogen Storage Disease Type I/pathology , Glycogen Storage Disease Type III/metabolism , Humans , Liver/pathology , Liver Cirrhosis/metabolism , Liver Diseases , Male , Oligosaccharides/analysis , Oligosaccharides/metabolism , Transaminases/analysis , Transaminases/metabolism , Triglycerides/analysis , Triglycerides/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...