Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gut Microbes ; 15(1): 2167170, 2023.
Article in English | MEDLINE | ID: mdl-36732495

ABSTRACT

Bariatric surgery remains a potent therapy for nonalcoholic fatty liver disease (NAFLD), but its inherent risk and eligibility requirement limit its adoption. Therefore, understanding how bariatric surgery improves NAFLD is paramount to developing novel therapeutics. Here, we show that the microbiome changes induced by sleeve gastrectomy (SG) reduce glucose-dependent insulinotropic polypeptide (GIP) signaling and confer resistance against diet-induced obesity (DIO) and NAFLD. We examined a cohort of NALFD patients undergoing SG and evaluated their microbiome, serum metabolites, and GI hormones. We observed significant changes in Bacteroides, lipid-related metabolites, and reduction in GIP. To examine if the changes in the microbiome were causally related to NAFLD, we performed fecal microbial transplants in antibiotic-treated mice from patients before and after their surgery who had significant weight loss and improvement of their NAFLD. Mice transplanted with the microbiome of patients after bariatric surgery were more resistant to DIO and NAFLD development compared to mice transplanted with the microbiome of patients before surgery. This resistance to DIO and NAFLD was also associated with a reduction in GIP levels in mice with post-bariatric microbiome. We further show that the reduction in GIP was related to higher levels of Akkermansia and differing levels of indolepropionate, bacteria-derived tryptophan-related metabolite. Overall, this is one of the few studies showing that GIP signaling is altered by the gut microbiome, and it supports that the positive effect of bariatric surgery on NAFLD is in part due to microbiome changes.


Subject(s)
Bariatric Surgery , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Obesity, Morbid , Animals , Mice , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/complications , Obesity, Morbid/surgery , Obesity/surgery , Obesity/complications , Receptors, G-Protein-Coupled , Peptides , Glucose
2.
Nutrients ; 12(10)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987837

ABSTRACT

BACKGROUND: Bariatric surgery is proven to change eating behavior and cause sustained weight loss, yet the exact mechanisms underlying these changes are not clearly understood. We explore this in a novel way by examining how bariatric surgery affects the brain-gut-microbiome (BGM) axis. METHODS: Patient demographics, serum, stool, eating behavior questionnaires, and brain magnetic resonance imaging (MRI) were collected before and 6 months after laparoscopic sleeve gastrectomy (LSG). Differences in eating behavior and brain morphology and resting-state functional connectivity in core reward regions were correlated with serum metabolite and 16S microbiome data. RESULTS: LSG resulted in significant weight loss and improvement in maladaptive eating behaviors as measured by the Yale Food Addiction Scale (YFAS). Brain imaging showed a significant increase in brain volume of the putamen (p.adj < 0.05) and amygdala (p.adj < 0.05) after surgery. Resting-state connectivity between the precuneus and the putamen was significantly reduced after LSG (p.adj = 0.046). This change was associated with YFAS symptom count. Bacteroides, Ruminococcus, and Holdemanella were associated with reduced connectivity between these areas. Metabolomic profiles showed a positive correlation between this brain connection and a phosphatidylcholine metabolite. CONCLUSION: Bariatric surgery modulates brain networks that affect eating behavior, potentially through effects on the gut microbiota and its metabolites.


Subject(s)
Brain/metabolism , Diet/psychology , Gastrectomy/psychology , Gastrointestinal Microbiome , Health Behavior , Laparoscopy/psychology , Obesity/psychology , Adolescent , Adult , Bariatric Surgery , Female , Food Addiction/psychology , Humans , Magnetic Resonance Imaging , Middle Aged , Obesity/surgery , Surveys and Questionnaires , Weight Loss , Young Adult
3.
Psychosom Med ; 79(8): 880-887, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28570438

ABSTRACT

OBJECTIVE: Weight loss surgery results in significant changes in the anatomy, function, and intraluminal environment of the gastrointestinal tract affecting the gut microbiome. Although bariatric surgery results in sustained weight loss, decreased appetite, and hedonic eating, it is unknown whether the surgery-induced alterations in gut microbiota play a role in the observed changes in hedonic eating. We explored the following hypotheses: (1) laparoscopic sleeve gastrectomy (LSG) results in changes in gut microbial composition; (2) alterations in gut microbiota are related to weight loss; (3) alterations in gut microbiome are associated with changes in appetite and hedonic eating. METHODS: Eight obese women underwent LSG. Their body mass index, body fat mass, food intake, hunger, hedonic eating scores, and stool samples were obtained at baseline and 1-month postsurgery. 16S ribosomal RNA gene sequencing was performed on stool samples. DESeq2 changes in microbial abundance. Multilevel-sparse partial least squares discriminant analysis was applied to genus-level abundance for discriminative microbial signatures. RESULTS: LSG resulted in significant reductions in body mass index, food intake, and hedonic eating. A microbial signature composed of five bacterial genera discriminated between pre- and postsurgery status. Several bacterial genera were significantly associated with weight loss (Bilophila, q = 3E-05; Faecalibacterium q = 4E-05), lower appetite (Enterococcus, q = 3E-05), and reduced hedonic eating (Akkermansia, q = .037) after surgery. CONCLUSIONS: In this preliminary analysis, changes in gut microbial abundance discriminated between pre- and postoperative status. Alterations in gut microbiome were significantly associated with weight loss and with reduced hedonic eating after surgery; however, a larger sample is needed to confirm these findings.


Subject(s)
Appetite/physiology , Bariatric Surgery/methods , Feeding Behavior/physiology , Gastrointestinal Microbiome/physiology , Obesity, Morbid/surgery , Pleasure/physiology , Weight Loss/physiology , Adult , Female , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...