Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Physiol Pharmacol ; 71(4)2020 Aug.
Article in English | MEDLINE | ID: mdl-33316773

ABSTRACT

Obesity is associated with increased sympathetic nervous system activation, possibly contributing to higher cardiovascular risk. The aim of this study was to assess the relationship between body adiposity and sympathoadrenergic contractions in rat isolated mesenteric arteries, and the modulatory effect of mesenteric perivascular adipose tissue (PVAT). Experiments were performed on male 38-week-old Wistar, Zucker lean (ZL) and Zucker diabetic fatty (ZDF) rats. Paired rings of isolated rat superior mesenteric arteries with or without PVAT were prepared and connected to a force-displacement transducer for the recording of isometric tension. Contractile responses were elicited by increasing doses of exogenous noradrenaline and by endogenous noradrenaline released during electrical stimulation of perivascular adrenergic nerves. In ZDF rats, mesenteric PVAT had marked anticontractile effect leading to significant reduction in adrenergic contractions of their superior mesenteric arteries; however, in arterial preparations without PVAT, obese rats showed significantly increased sensitivity in their contractile responses to adrenergic stimulation when compared to other rat groups. In Wistar rats, ranging in the level of body adiposity between ZL and ZDF rats, neurogenic contractions in arterial preparations with preserved PVAT were higher compared to those without PVAT. No vasomodulatory effect of PVAT was detected in mesenteric arteries from ZL rats. The results of this study indicate that the modulatory effect of mesenteric PVAT on arterial adrenergic contractions did not change in proportion with increasing adiposity; however, it could be influenced by the rat strain-specific distribution of sympathetic nerves between PVAT and the proper mesenteric arterial wall. In ZDF rats, characterized by higher vascular sympathetic tone, the mesenteric arteries might be specifically regulated by the anticontractile effect of PVAT, leading to higher mesenteric blood flow. This could be associated with hyperphagia and increased nutrient-induced mesenteric vasodilatation in this rat strain.


Subject(s)
Adiposity , Mesenteric Artery, Superior/innervation , Obesity/physiopathology , Sympathetic Nervous System/physiopathology , Vasoconstriction , Animals , Disease Models, Animal , Electric Stimulation , Male , Norepinephrine/pharmacology , Rats, Wistar , Rats, Zucker , Species Specificity , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/metabolism , Vasoconstriction/drug effects
2.
Physiol Res ; 69(6): 1067-1083, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33129250

ABSTRACT

We investigated whether polyethylene glycol-coated Fe3O4 nanoparticles (IONs), acute stress and their combination modifies vascular functions, nitric oxide synthase (NOS) activity, mean arterial pressure (MAP) as well as hepcidin and ferritin H gene expressions in Wistar-Kyoto rats. Rats were divided into control, ION-treated rats (1 mg Fe/kg i.v.), repeated acute air-jet stress-exposed rats and IONs-and-stress co-exposed rats. Maximal acetylcholine (ACh)-induced and sodium nitroprusside (SNP)-induced relaxations in the femoral arteries did not differ among the groups. IONs alone significantly elevated the N?-nitro-L-arginine methyl ester (L-NAME)-sensitive component of ACh-induced relaxation and reduced the sensitivity of vascular smooth muscle cells to SNP. IONs alone also elevated NOS activity in the brainstem and hypothalamus, reduced NOS activity in the kidneys and had no effect in the liver. Acute stress alone failed to affect vascular function and NOS activities in all the tissues investigated but it elevated ferritin H expression in the liver. In the ION-and-stress group, NOS activity was elevated in the kidneys and liver, but reduced in the brainstem and hypothalamus vs. IONs alone. IONs also accentuated air-jet stress-induced MAP responses vs. stress alone. Interestingly, stress reduced ION-originated iron content in blood and liver while it was elevated in the kidneys. In conclusion, the results showed that 1) acute administration of IONs altered vascular function, increased L-NAME-sensitive component of ACh-induced relaxation and had tissue-dependent effects on NOS activity, 2) ION effects were considerably reduced by co-exposure to repeated acute stress, likely related to decrease of ION-originated iron in blood due to elevated decomposition and/or excretion.


Subject(s)
Endothelium, Vascular/drug effects , Magnetic Iron Oxide Nanoparticles/administration & dosage , Nitric Oxide Synthase/metabolism , Nitric Oxide/biosynthesis , Stress, Physiological/drug effects , Animals , Endothelium, Vascular/metabolism , Magnetic Iron Oxide Nanoparticles/chemistry , Male , Nitric Oxide/metabolism , Rats , Rats, Inbred WKY
3.
J Physiol Pharmacol ; 71(3)2020 Jun.
Article in English | MEDLINE | ID: mdl-33077692

ABSTRACT

It is known that a high level of uric acid (UA) in plasma, hyperuricemia (HU), is associated with the increased risk of cardiovascular diseases (CVDs). Endothelial damage has been suggested as a potential mechanism involved in HU-induced CVDs, especially in patients with the accumulation of other cardiovascular risk factors. However, the role of UA in the pathogenesis of endothelial dysfunction is still a matter of debate. It is unclear whether UA is a causative risk factor in endothelial dysfunction, an inert marker or an endothelium-protective molecule with respect to its antioxidant properties. Of note, only a few studies have been conducted to investigate the effect of UA on vascular endothelium-dependent relaxation. Therefore, we have studied the acute in vitro effects of high UA concentrations on the endothelial function of arteries isolated from aged rats. Experiments were performed in small mesenteric arteries (SMAs), femoral arteries and thoracic aortas isolated from 68-week-old and 57-week-old male Wistar-Kyoto rats. Vascular reactivity was investigated in isometric conditions using the wire myograph and organ chamber. Acetylcholine (ACh) was used to investigate endothelium-dependent vasorelaxation. Then, UA was added to the myograph or organ chamber at 600 µmol/l (arteries from 68-week-old rats) or 1200 µmol/l (arteries from 57-week-old rats) and incubated for 1 h, and this was followed by determining the ACh concentration-response curve. UA had no significant effect on ACh-induced vasorelaxation and pD2 values in all investigated groups. Likewise, no significant differences in noradrenaline- (SMAs), serotonin- (femoral arteries) and phenylephrine-induced (aortas) vasoconstriction were observed after UA pre-incubation. In conclusion, high concentrations of UA administered acutely failed to affect endothelial function and did not provoke endothelial dysfunction in resistant mesenteric arteries, medium-sized and large arteries from aged rats.


Subject(s)
Aorta, Thoracic/drug effects , Endothelium, Vascular/drug effects , Femoral Artery/drug effects , Mesenteric Arteries/drug effects , Uric Acid/pharmacology , Vasoconstriction/drug effects , Vasodilation/drug effects , Age Factors , Animals , Aorta, Thoracic/physiology , Endothelium, Vascular/physiology , Femoral Artery/physiology , In Vitro Techniques , Male , Mesenteric Arteries/physiology , Rats, Inbred WKY , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology
4.
Physiol Res ; 69(Suppl 4): S541-S553, 2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33656904

ABSTRACT

Reactive oxygen species are an important element of redox regulation in cells and tissues. During physiological processes, molecules undergo chemical changes caused by reduction and oxidation reactions. Free radicals are involved in interactions with other molecules, leading to oxidative stress. Oxidative stress works two ways depending on the levels of oxidizing agents and products. Excessive action of oxidizing agents damages biomolecules, while a moderate physiological level of oxidative stress (oxidative eustress) is necessary to control life processes through redox signaling required for normal cellular operation. High levels of reactive oxygen species (ROS) mediate pathological changes. Oxidative stress helps to regulate cellular phenotypes in physiological and pathological conditions. Nrf2 (nuclear factor erythroid 2-related factor 2, NFE2L2) transcription factor functions as a target nuclear receptor against oxidative stress and is a key factor in redox regulation in hypertension and cardiovascular disease. Nrf2 mediates transcriptional regulation of a variety of target genes. The Keap1-Nrf2-ARE system regulates many detoxification and antioxidant enzymes in cells after the exposure to reactive oxygen species and electrophiles. Activation of Nrf2/ARE signaling is differentially regulated during acute and chronic stress. Keap1 normally maintains Nrf2 in the cytosol and stimulates its degradation through ubiquitination. During acute oxidative stress, oxidized molecules modify the interaction of Nrf2 and Keap1, when Nrf2 is released from the cytoplasm into the nucleus where it binds to the antioxidant response element (ARE). This triggers the expression of antioxidant and detoxification genes. The consequence of long-term chronic oxidative stress is activation of glycogen synthase kinase 3beta (GSK-3beta) inhibiting Nrf2 activity and function. PPARgamma (peroxisome proliferator-activated receptor gamma) is a nuclear receptor playing an important role in the management of cardiovascular diseases, hypertension and metabolic syndrome. PPARgamma targeting of genes with peroxisome proliferator response element (PPRE) has led to the identification of several genes involved in lipid metabolism or oxidative stress. PPARgamma stimulation is triggered by endogenous and exogenous ligands - agonists and it is involved in the activation of several cellular signaling pathways involved in oxidative stress response, such as the PI3K/Akt/NOS pathway. Nrf2 and PPARgamma are linked together with their several activators and Nrf2/ARE and PPARgamma/PPRE pathways can control several types of diseases.


Subject(s)
Blood Pressure , Cardiovascular Diseases/metabolism , Hypertension/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , PPAR gamma/metabolism , Reactive Oxygen Species/metabolism , Animals , Antioxidant Response Elements , Cardiovascular Diseases/physiopathology , Humans , Hypertension/physiopathology , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction
5.
Oxid Med Cell Longev ; 2019: 5349398, 2019.
Article in English | MEDLINE | ID: mdl-31885800

ABSTRACT

Deficiency of nitric oxide (NO) and oxidative stress can be a cause, a consequence, or, more often, a potentiating factor for hypertension and hypertensive renal disease. Both NO and superoxide anions are radical molecules that interact with each other, leading to oxidative damage of such organs as the kidney. In the present study, we investigated the effect of chronic-specific (neuronal NOS inhibition) and nonspecific NOS inhibition on the oxidative state and antioxidant response and associated oxidative damage of the kidney of young normotensive and hypertensive rats. Young male normotensive Wistar rats (WRs, age 4 weeks) and spontaneously hypertensive rats (SHRs, age 4 weeks) were divided into three groups for each strain by the type of administered compounds. The first group was treated with 7-nitroindazole (WR+7-NI; SHR+7-NI), the second group was treated with N(G)-nitro-L-arginine-methyl ester (WR+L-NAME; SHR+L-NAME), and the control group was treated with pure drinking water (WR; SHR) continuously for up to 6 weeks. Systolic blood pressure increased in WR+L-NAME after the first week of administration and increased slightly in SHR+L-NAME in the third week of treatment. 7-NI had no effect on blood pressure. While total NOS activity was not affected by chronic NOS inhibition in any of the WR groups, it was attenuated in SHR+7-NI and SHR+L-NAME. Nitration of proteins (3-nitrotyrosine expression) was significantly reduced in WR+7NI but not in WR+L-NAME and increased in SHR+7-NI and SHR+L-NAME. Immunoblotting analysis of SOD isoforms showed decreased SOD2 and SOD3 expressions in both WR+7-NI and WR+L-NAME followed by increased SOD activity in WR+L-NAME. Conversely, increased expression of SOD2 and SOD3 was observed in SHR+L-NAME and SHR+7-NI, respectively. SOD1 expression and total activity of SOD did not change in the SHR groups. Our results show that the antioxidant defense system plays an important role in maintaining the oxidative state during NO deficiency. While the functioning antioxidant system seeks to balance the oxidation state in the renal cortex of normotensive WRs, the impaired antioxidant activity leads to the development of oxidative damage of proteins in the kidney induced by peroxynitrite in SHRs.


Subject(s)
Antioxidants/metabolism , Hypertensive Retinopathy/metabolism , Indazoles/administration & dosage , Kidney/metabolism , Nitric Oxide Synthase/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Humans , Kidney/pathology , Male , Nitric Oxide/metabolism , Oxidation-Reduction , Oxidative Stress , Rats , Rats, Wistar
6.
J Physiol Pharmacol ; 69(2)2018 Apr.
Article in English | MEDLINE | ID: mdl-29980143

ABSTRACT

The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-dependent nuclear receptor. It plays an important role in kidney physiology, where it might contribute to arterial blood pressure regulation and hypertension development by modulation of several signaling pathways. In our study we focused on the effect of PPARγ agonist pioglitazone on changes in the nitric oxide synthase (NOS) expression and activity, the renin-angiotensin system (RAS) cascade, and redox homeostasis signaling pathways in the renal cortex of young pre hypertensive rat models. Young (5-weeks old) spontaneously hypertensive (SHR) and borderline hypertensive (BHR) rats were treated by pioglitazone (PIO, 10 mg/kg/day) during 10 days. Blood pressure (BP) was determined by plethysmography method. Changes in lipid profile were detected in plasma with standard kits using biochemical analyser. Gene expression has been detected by qRT-PCR and protein level was determined using Western blot analysis. Superoxide dismutase (SOD) and catalase (CAT) activities were determined spectrophotometrically and the total enzyme activity of NOS was measured using a radioactive assay based on conversion of [3H] L-arginine to [3H] L- citrulline. Administration of pioglitazone decreased BP in BHR and slowed down the development of BP increase in young SHR animals. For NOS, activation by PPARγ correlated with increase in gene and protein expression of NOS isoforms and in total enzyme activity both in BHR and SHR. In the AT1R/Nox pathway, the treatment did not significantly influence mRNA expression of the p22phox subunit of NADPH oxidase (Nox) and AT1R, but up-regulated the 'pro-vasodilatatory' Mas and AT2R receptors in both BHR and SHR groups. Pioglitazone treatment affected redox regulation. Increase in gene expression of nuclear factor E2-related factor 2 (Nrf2) and SOD isoforms correlated with SOD and CAT enzyme activities. The group treatment-to-control ratios, BHR Pioglitazone to BHR control and SHR Pioglitazone to SHR control for gene expression increased by 10% to 230%. The largest effect of PPARγ has been observed in SOD1, SOD3 and the Mas receptor gene treatment-to-control ratios. The most prominent differences between BHR and SHR were observed in SOD1 and Mas receptor expressions, with large effects of opposite sign in BHR versus SHR. Our data indicate that an increase of NO release activates signaling in the renal cortex of pre-hypertensive rats after pioglitazone treatment. Improvement of NO availability, AT2R, Mas receptors and aberrant redox regulation is thought to be the major correlated mechanisms mediating the BP decrease affected by the PPARγ agonist treatment. We also observed that the most sensitive tissue responses to PPARγ-dependent activation of Nrf2 have been primarily found in the kidney of young hypertensive animals.


Subject(s)
Hypertension/metabolism , Hypoglycemic Agents/pharmacology , Kidney/drug effects , Nitric Oxide/metabolism , PPAR gamma/agonists , Renin-Angiotensin System/drug effects , Thiazolidinediones/pharmacology , Animals , Blood Pressure/drug effects , Catalase/metabolism , Gene Expression Regulation/drug effects , Kidney/metabolism , Lipid Metabolism , Male , NF-E2-Related Factor 2/genetics , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , PPAR gamma/genetics , Pioglitazone , Proto-Oncogene Mas , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Rats, Inbred SHR , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
7.
J Physiol Pharmacol ; 68(4): 527-538, 2017 Aug.
Article in English | MEDLINE | ID: mdl-29151069

ABSTRACT

In normotensive conditions, it has been confirmed that S-nitrosothiols (RSNO), can interact with hydrogen sulfide (H2S) and create new substances with specific vasoactive effects. This interaction could also represent a new regulator signaling pathway in conditions of hypertension. Until now, these effects were studied only in normotensive rats, and they have not been carried out in humans yet. We investigated the vasoactive effects of the products of the H2S/S-nitrosoglutathione (S/GSNO) interaction in lobar arteries (LA) isolated from the nephrectomized kidneys of patients suffering from arterial hypertension and in renal arteries (RA) of spontaneously hypertensive rats (SHR). The changes in the isometric tension of pre-contracted arteries were evaluated. Acetylcholine-induced vasorelaxation of LA was reduced compared to the effect induced by an NO donor, sodium nitroprusside suggesting an endothelium dysfunction. While 1 µmol/L Na2S had a minimal effect on the vascular tone, the concentration 20 µmol/L evoked a slight vasorelaxation. GSNO at 0.1 µmol/L induced vasorelaxation, which was less pronounced compared to the effect induced by 1 µmol/L. The S/GSNO products (final concentration 0.1 µmol/L) prepared as the mixture of GSNO (0.1 µmol/L) + Na2S (1 µmol/L) induced a higher vasorelaxation compared to GSNO (0.1 µmol/L) alone only in the 5th minute and without the differences in the speed. On the other hand, the S/GSNO products (final concentration 1 µmol/L) prepared as the mixture of GSNO (1 µmol/L) + Na2S (10 µmol/L) induced a higher and faster vasorelaxation compared to the effect induced by GSNO (1 µmol/L) alone. In RA of SHR this S/GSNO products induced similar vasorelaxation (higher and faster than GSNO) with involvement of HNO (partially) and cGMP as mediators. However, the products of the H2S/NO donor (DEA NONOate) manifested differently than S/GSNO indicating the unique interaction between GSNO and H2S. In this study, we confirmed for the first time that specific vasoactive effects of coupled nitroso-sulfide signaling were also triggered in human arterial tissue. We suggest that in hypertension, H2S in interaction with GSNO regulated a vasoconstrictor-induced increase in arterial tone towards a stronger vasorelaxation compared to GSNO alone or H2S alone.


Subject(s)
Arteries/drug effects , Hypertension/drug therapy , Nitroso Compounds/pharmacology , Signal Transduction/drug effects , Sulfides/pharmacology , Vasodilation/drug effects , Acetylcholine/pharmacology , Aged , Animals , Arteries/metabolism , Blood Pressure/drug effects , Cyclic GMP/metabolism , Endothelium/drug effects , Endothelium/metabolism , Humans , Hydrogen Sulfide/metabolism , Hypertension/metabolism , Male , Nitric Oxide/metabolism , Nitroprusside/pharmacology , Rats , Rats, Inbred SHR , Sulfides/metabolism , Vasoconstrictor Agents/pharmacology
9.
Oxid Med Cell Longev ; 2016: 6949020, 2016.
Article in English | MEDLINE | ID: mdl-27885334

ABSTRACT

This study investigated the effects of subchronic (-)-epicatechin (Epi) treatment on locomotor activity and hypertension development in young spontaneously hypertensive rats (SHR). Epi was administered in drinking water (100 mg/kg/day) for 2 weeks. Epi significantly prevented the development of hypertension (138 ± 2 versus 169 ± 5 mmHg, p < 0.001) and reduced total distance traveled in the open-field test (22 ± 2 versus 35 ± 4 m, p < 0.01). In blood, Epi significantly enhanced erythrocyte deformability, increased total antioxidant capacity, and decreased nitrotyrosine concentration. In the aorta, Epi significantly increased nitric oxide (NO) synthase (NOS) activity and elevated the NO-dependent vasorelaxation. In the left heart ventricle, Epi increased NOS activity without altering gene expressions of nNOS, iNOS, and eNOS. Moreover, Epi reduced superoxide production in the left heart ventricle and the aorta. In the brain, Epi increased nNOS gene expression (in the brainstem and cerebellum) and eNOS expression (in the cerebellum) but had no effect on overall NOS activity. In conclusion, Epi prevented the development of hypertension and reduced locomotor hyperactivity in young SHR. These effects resulted from improved cardiovascular NO bioavailability concurrently with increased erythrocyte deformability, without changes in NO production in the brain.


Subject(s)
Blood Pressure/drug effects , Catechin/pharmacology , Motor Activity/drug effects , Animals , Antioxidants/metabolism , Behavior, Animal/drug effects , Erythrocyte Deformability/drug effects , Male , Nitric Oxide Synthase/metabolism , Rats, Inbred SHR , Superoxides/metabolism
10.
Physiol Res ; 65(Suppl 3): S381-S390, 2016 10 24.
Article in English | MEDLINE | ID: mdl-27775423

ABSTRACT

This study investigated the contribution of reactive oxygen species (ROS) to blood pressure regulation in conscious adult male Wistar rats exposed to acute stress. Role of ROS was investigated in rats with temporally impaired principal blood pressure regulation systems using ganglionic blocker pentolinium (P, 5 mg/kg), angiotensin converting enzyme inhibitor captopril (C, 10 mg/kg), nitric oxide synthase inhibitor L-NAME (L, 30 mg/kg) and superoxide dismutase mimeticum tempol (T, 25 mg/kg). Mean arterial pressure (MAP) was measured by the carotid artery catheter and inhibitors were administered intravenously. MAP was disturbed by a 3-s air jet, which increased MAP by 35.2+/-3.0 % vs. basal MAP after the first exposure. Air jet increased MAP in captopril- and tempol-treated rats similarly as observed in saline-treated rats. In pentolinium-treated rats stress significantly decreased MAP vs. pre-stress value. In L-NAME-treated rats stress failed to affect MAP significantly. Treatment of rats with P+L+C resulted in stress-induced MAP decrease by 17.3+/-1.3 % vs. pre-stress value and settling time (20.1+/-4.2 s). In P+L+C+T-treated rats stress led to maximal MAP decrease by 26.4+/-2.2 % (p<0.005 vs. P+L+C) and prolongation of settling time to 32.6+/-3.3 s (p<0.05 vs. P+L+C). Area under the MAP curve was significantly smaller in P+L+C-treated rats compared to P+L+C+T-treated ones (167+/-43 vs. 433+/-69 a.u., p<0.008). In conclusion, in rats with temporally impaired blood pressure regulation, the lack of ROS resulted in greater stress-induced MAP alterations and prolongation of time required to reach new post-stress steady state.


Subject(s)
Blood Pressure , Reactive Oxygen Species/metabolism , Stress, Psychological/physiopathology , Sympathetic Nervous System/physiopathology , Animals , Male , Rats , Rats, Wistar
11.
Physiol Res ; 62(6): 631-41, 2013.
Article in English | MEDLINE | ID: mdl-23869886

ABSTRACT

As wine polyphenols were shown to possess many positive effects in mammals, including improvement of vascular function, this study investigated the effect of the Slovak Alibernet red wine extract (AWE) on blood pressure and vascular function in young normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Six weeks old, male, WKY and SHR were treated with AWE for three weeks at the dose of 24.2 mg/kg/day. Blood pressure (BP), determined by tail-cuff plethysmography, was significantly elevated in SHR vs. WKY and AWE failed to affect it. Lipid peroxidation was evaluated by determination of thiobarbituric acid-reactive substances. Vascular function was assessed in rings of the femoral artery using Mulvany-Halpern's myograph. Maximal endothelium-dependent acetylcholine (ACh)-induced relaxation was reduced in control SHR vs. WKY rats by approximately 9.3 %, which was associated with a significant decrease of its NO-independent component. AWE failed to affect maximal ACh-induced relaxation, both its NO-dependent and independent components, compared to controls of the same genotype. AWE however reduced lipid peroxidation in the left ventricle of both WKY and SHR and in the liver of SHR. In conclusion, three-week administration of AWE failed to reduce BP and to improve endothelial function in the femoral arteries of both genotypes investigated.


Subject(s)
Endothelium, Vascular/physiopathology , Hypertension/drug therapy , Hypertension/physiopathology , Peripheral Arterial Disease/drug therapy , Peripheral Arterial Disease/physiopathology , Plant Extracts/administration & dosage , Stilbenes/administration & dosage , Animals , Blood Pressure/drug effects , Dose-Response Relationship, Drug , Endothelium, Vascular/drug effects , Hypertension/etiology , Male , Peripheral Arterial Disease/complications , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Resveratrol , Treatment Failure , Treatment Outcome , Vascular Resistance/drug effects , Wine
12.
Physiol Res ; 62(6): 615-29, 2013.
Article in English | MEDLINE | ID: mdl-23869891

ABSTRACT

This study examined nitric oxide (NO) production, oxidative load and endothelium-dependent relaxation (NO-dependent and NO-independent) in adult male borderline hypertensive (BHR) and spontaneously hypertensive (SHR) rats as compared to normotensive Wistar-Kyoto (WKY) rats. Systolic blood pressure (BP) was determined by tail-cuff. NO production was determined by conversion of [(3)H]-L-arginine. Conjugated dienes (CD) and concentrations of thiobarbituric acid-reactive substances (TBARS) were measured for assessment of oxidative load. Vascular function was investigated in rings of the femoral artery (FA) using a wire myograph. BP of WKY, BHR and SHR was 106+/-2, 143+/-3 and 191+/-3 mm Hg, respectively (p<0.01 for each). Significant left ventricle (LV) hypertrophy and elevated levels of CD and TBARS in the LV were present in BHR and SHR as compared to WKY. NO production was elevated significantly in the aorta of BHR and SHR vs. WKY as well as in the LV of SHR vs. WKY. Acetylcholine (ACh)-induced relaxation of the FA was reduced significantly in both BHR and SHR vs. WKY. The NO-dependent component of ACh-induced relaxation had increasing tendency in hypertensive groups and it correlated positively with BP. The NO-independent component of vasorelaxation was reduced significantly in BHR and SHR vs. WKY and it correlated negatively with BP. In conclusion, the results showed that endothelial dysfunction in the experimental model of borderline hypertensive and hypertensive rats is NO-independent. The results suggest that borderline hypertension represents a risk of other cardiovascular disorders which is qualitatively similar to that of fully developed hypertension.


Subject(s)
Endothelium, Vascular/physiopathology , Femoral Artery/physiopathology , Hypertension/etiology , Hypertension/physiopathology , Nitric Oxide/metabolism , Peripheral Arterial Disease/complications , Peripheral Arterial Disease/physiopathology , Animals , Blood Pressure , Male , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Vascular Stiffness
13.
J Photochem Photobiol B ; 103(3): 230-3, 2011 Jun 02.
Article in English | MEDLINE | ID: mdl-21501961

ABSTRACT

Hemoglobin is the main absorber of visible light in blood and blood-perfused tissues. However, hemoglobin is released from a red blood cell (RBC) during hemolysis. Hemolysis may be caused by a large number of medical conditions, including photodynamic therapy (PDT) and this subsequently can affect passage of light through the treated biological structures. The purpose of the present study was to determine the penetration of a laser beam through a suspension of hemoglobin-free human red blood cells (RBCs) - ghosts. Although hemoglobin has been efficiently removed from the samples used in our experiments, our measurements show that the samples still effectively attenuate the radiant power of penetrating laser light. We established penetration depths of 12.6mm and 15.4mm for two different laser light wavelengths, 532nm and 630nm, respectively. The penetration depth of laser light was about one order of magnitude higher for hemoglobin-free RBC ghosts as compared to intact RBCs [8,10,12]. These results can be important in case of phototherapy or biostimulation, since all photons that penetrate in a biological object may interact with it and evoke biological response.


Subject(s)
Erythrocyte Membrane/radiation effects , Lasers , Photochemotherapy/methods , Adult , Erythrocyte Membrane/physiology , Humans , Middle Aged , Spectrophotometry
14.
Cesk Fysiol ; 60(2): 52-6, 2011.
Article in Slovak | MEDLINE | ID: mdl-22263326

ABSTRACT

This paper describes the methodology and application of a wire myograph which has been used for the measurement of vascular reactivity. In an earlier years (pre-1970s) most of the information about the mechanical, morphological and pharmacological properties of vascular smooth muscle was confined only to larger arteries (mainly aorta). Whereas information about smaller arteries was purely inferred from perfusion experiments and histological examination. However, after mid-1970s Prof. Mulvany and Prof. Halpern developed and introduced an astonishing technique, a wire myography, to study the contractile responses of an isolated small resistance arteries (approximately 100-300 microm in internal diameter). This work describes some of the principles used in the investigation of the vessels, based on the use of the small vessel dual wire myograph. A dual myograph allows us simultaneous testing of two vessels. The technique allows segments of small arteries to be mounted as the ring preparations to the myograph chamber, and providing measurements of isometric responses. On the other hand, there are other techniques including an isobaric and isotonic mounting of arteries have been developed to date. The myograph has been used for the investigation of a variety of small and larger arteries and other tubular structures from a wide range of species. In the second part of this report we show an experimental example concerning measurement of endothelial functionality by technique described therein before.


Subject(s)
Muscle, Smooth, Vascular/physiology , Myography/instrumentation , Vasoconstriction/physiology , Vasodilation/physiology , Animals , Humans
15.
Physiol Res ; 59(6): 1033-1036, 2010.
Article in English | MEDLINE | ID: mdl-21208020

ABSTRACT

Wire myograph is a device for the in vitro investigation of both, active and passive properties of arteries. Arteries from a variety of animal species, pathological states, and vascular beds were investigated using this method. We focus on the normalization procedure which is aimed to standardize experimental settings and, in part, to simulate physiological conditions. During normalization, it is determined the internal circumference of a vessel stretched to a tension that corresponds to the transmural pressure of 100 mm Hg (IC100). Once it is determined, the internal circumference is traditionally set to (0.9 IC100). However, this constant 0.9, called also the normalization factor (NF), was experimentally determined for rat small mesenteric arteries only. Therefore, the aim of our work was to show the influence of different NFs on the passive tension and reactivity of both, rat femoral arteries (FA) and the first branches of superior mesenteric arteries (MA). We found out that the maximal active wall tension of the FA was achieved at the NF value of 1.1, and that of the MA at 0.9. Considering the values of the active wall tension we suggest that higher reactivity and better signal-to-noise ratio in FA can be achieved when the NF is set at least to 1.0.


Subject(s)
Femoral Artery/physiology , Myography/instrumentation , Animals , Mesenteric Arteries/physiology , Myography/methods , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...